Abstract:Benchmarks are essential for quantitatively tracking progress in AI. As AI agents become increasingly capable, researchers and practitioners have introduced agentic benchmarks to evaluate agents on complex, real-world tasks. These benchmarks typically measure agent capabilities by evaluating task outcomes via specific reward designs. However, we show that many agentic benchmarks have issues task setup or reward design. For example, SWE-bench Verified uses insufficient test cases, while TAU-bench counts empty responses as successful. Such issues can lead to under- or overestimation agents' performance by up to 100% in relative terms. To make agentic evaluation rigorous, we introduce the Agentic Benchmark Checklist (ABC), a set of guidelines that we synthesized from our benchmark-building experience, a survey of best practices, and previously reported issues. When applied to CVE-Bench, a benchmark with a particularly complex evaluation design, ABC reduces the performance overestimation by 33%.
Abstract:As Large Language Models (LLMs) and other AI systems evolve, robustly estimating their capabilities from inherently stochastic outputs while systematically quantifying uncertainty in these estimates becomes increasingly important. Further, advanced AI evaluations often have a nested hierarchical structure, exhibit high levels of complexity, and come with high costs in testing the most advanced AI systems. To address these challenges, we introduce HiBayES, a generalizable Hierarchical Bayesian modeling framework for AI Evaluation Statistics. HiBayES supports robust inferences in classical question-answer benchmarks and advanced agentic evaluations, particularly in low-data scenarios (e.g., < 20 data points per evaluation). Built on Generalized Linear Models (GLMs), Bayesian data analysis, and formal model comparison, HiBayES provides principled uncertainty quantification and robust parameter estimation. This paper offers a comprehensive introduction to HiBayES, including illustrative examples, comparisons to conventional statistical methods, and practical guidance for implementing multilevel Bayesian GLMs. Additionally, we provide a HiBayES software package [4] (Beta version) for out-of-the-box implementation.