Abstract:Marine oil spills are urgent environmental hazards that demand rapid and reliable detection to minimise ecological and economic damage. While Synthetic Aperture Radar (SAR) imagery has become a key tool for large-scale oil spill monitoring, most existing detection methods rely on deep learning-based segmentation applied to single SAR images. These static approaches struggle to distinguish true oil spills from visually similar oceanic features (e.g., biogenic slicks or low-wind zones), leading to high false positive rates and limited generalizability, especially under data-scarce conditions. To overcome these limitations, we introduce Oil Spill Change Detection (OSCD), a new bi-temporal task that focuses on identifying changes between pre- and post-spill SAR images. As real co-registered pre-spill imagery is not always available, we propose the Temporal-Aware Hybrid Inpainting (TAHI) framework, which generates synthetic pre-spill images from post-spill SAR data. TAHI integrates two key components: High-Fidelity Hybrid Inpainting for oil-free reconstruction, and Temporal Realism Enhancement for radiometric and sea-state consistency. Using TAHI, we construct the first OSCD dataset and benchmark several state-of-the-art change detection models. Results show that OSCD significantly reduces false positives and improves detection accuracy compared to conventional segmentation, demonstrating the value of temporally-aware methods for reliable, scalable oil spill monitoring in real-world scenarios.



Abstract:Multi-agent multi-objective systems (MAMOS) have emerged as powerful frameworks for modelling complex decision-making problems across various real-world domains, such as robotic exploration, autonomous traffic management, and sensor network optimisation. MAMOS offers enhanced scalability and robustness through decentralised control and more accurately reflects inherent trade-offs between conflicting objectives. In MAMOS, each agent uses utility functions that map return vectors to scalar values. Existing MAMOS optimisation methods face challenges in handling heterogeneous objective and utility function settings, where training non-stationarity is intensified due to private utility functions and the associated policies. In this paper, we first theoretically prove that direct access to, or structured modeling of, global utility functions is necessary for the Bayesian Nash Equilibrium under decentralised execution constraints. To access the global utility functions while preserving the decentralised execution, we propose an Agent-Attention Multi-Agent Multi-Objective Reinforcement Learning (AA-MAMORL) framework. Our approach implicitly learns a joint belief over other agents' utility functions and their associated policies during centralised training, effectively mapping global states and utilities to each agent's policy. In execution, each agent independently selects actions based on local observations and its private utility function to approximate a BNE, without relying on inter-agent communication. We conduct comprehensive experiments in both a custom-designed MAMO Particle environment and the standard MOMALand benchmark. The results demonstrate that access to global preferences and our proposed AA-MAMORL significantly improve performance and consistently outperform state-of-the-art methods.
Abstract:Model-based reinforcement learning (MBRL) offers an intuitive way to increase the sample efficiency of model-free RL methods by simultaneously training a world model that learns to predict the future. MBRL methods have progressed by largely prioritising the actor; optimising the world model learning has been neglected meanwhile. Improving the fidelity of the world model and reducing its time to convergence can yield significant downstream benefits, one of which is improving the ensuing performance of any actor it may train. We propose a novel approach that anticipates and actively seeks out high-entropy states using short-horizon latent predictions generated by the world model, offering a principled alternative to traditional curiosity-driven methods that chase once-novel states well after they were stumbled into. While many model predictive control (MPC) based methods offer similar alternatives, they typically lack commitment, synthesising multi step plans after every step. To mitigate this, we present a hierarchical planner that dynamically decides when to replan, planning horizon length, and the weighting between reward and entropy. While our method can theoretically be applied to any model that trains its own actors with solely model generated data, we have applied it to just Dreamer as a proof of concept. Our method finishes the Miniworld procedurally generated mazes 50% faster than base Dreamer at convergence and the policy trained in imagination converges in only 60% of the environment steps that base Dreamer needs.
Abstract:Earth observation foundation models have shown strong generalization across multiple Earth observation tasks, but their robustness under real-world perturbations remains underexplored. To bridge this gap, we introduce REOBench, the first comprehensive benchmark for evaluating the robustness of Earth observation foundation models across six tasks and twelve types of image corruptions, including both appearance-based and geometric perturbations. To ensure realistic and fine-grained evaluation, our benchmark focuses on high-resolution optical remote sensing images, which are widely used in critical applications such as urban planning and disaster response. We conduct a systematic evaluation of a broad range of models trained using masked image modeling, contrastive learning, and vision-language pre-training paradigms. Our results reveal that (1) existing Earth observation foundation models experience significant performance degradation when exposed to input corruptions. (2) The severity of degradation varies across tasks, model architectures, backbone sizes, and types of corruption, with performance drop varying from less than 1% to over 20%. (3) Vision-language models show enhanced robustness, particularly in multimodal tasks. REOBench underscores the vulnerability of current Earth observation foundation models to real-world corruptions and provides actionable insights for developing more robust and reliable models.
Abstract:Deep learning (DL)-based methods have demonstrated remarkable achievements in addressing orthogonal frequency division multiplexing (OFDM) channel estimation challenges. However, existing DL-based methods mainly rely on separate real and imaginary inputs while ignoring the inherent correlation between the two streams, such as amplitude and phase information that are fundamental in communication signal processing. This paper proposes AE-DENet, a novel autoencoder(AE)-based data enhancement network to improve the performance of existing DL-based channel estimation methods. AE-DENet focuses on enriching the classic least square (LS) estimation input commonly used in DL-based methods by employing a learning-based data enhancement method, which extracts interaction features from the real and imaginary components and fuses them with the original real/imaginary streams to generate an enhanced input for better channel inference. Experimental findings in terms of the mean square error (MSE) results demonstrate that the proposed method enhances the performance of all state-of-the-art DL-based channel estimators with negligible added complexity. Furthermore, the proposed approach is shown to be robust to channel variations and high user mobility.




Abstract:Multimodal learning robust to missing modality has attracted increasing attention due to its practicality. Existing methods tend to address it by learning a common subspace representation for different modality combinations. However, we reveal that they are sub-optimal due to their implicit constraint on intra-class representation. Specifically, the sample with different modalities within the same class will be forced to learn representations in the same direction. This hinders the model from capturing modality-specific information, resulting in insufficient learning. To this end, we propose a novel Decoupled Multimodal Representation Network (DMRNet) to assist robust multimodal learning. Specifically, DMRNet models the input from different modality combinations as a probabilistic distribution instead of a fixed point in the latent space, and samples embeddings from the distribution for the prediction module to calculate the task loss. As a result, the direction constraint from the loss minimization is blocked by the sampled representation. This relaxes the constraint on the inference representation and enables the model to capture the specific information for different modality combinations. Furthermore, we introduce a hard combination regularizer to prevent DMRNet from unbalanced training by guiding it to pay more attention to hard modality combinations. Finally, extensive experiments on multimodal classification and segmentation tasks demonstrate that the proposed DMRNet outperforms the state-of-the-art significantly.
Abstract:This letter aims to provide a fundamental analytical comparison for the two major types of relaying methods: intelligent reflecting surfaces and full-duplex relays, particularly focusing on unmanned aerial vehicle communication scenarios. Both amplify-and-forward and decode-and-forward relaying schemes are included in the comparison. In addition, optimal 3D UAV deployment and minimum transmit power under the quality of service constraint are derived. Our numerical results show that IRSs of medium size exhibit comparable performance to AF relays, meanwhile outperforming DF relays under extremely large surface size and high data rates.




Abstract:Learning based on multimodal data has attracted increasing interest recently. While a variety of sensory modalities can be collected for training, not all of them are always available in development scenarios, which raises the challenge to infer with incomplete modality. To address this issue, this paper presents a one-stage modality distillation framework that unifies the privileged knowledge transfer and modality information fusion into a single optimization procedure via multi-task learning. Compared with the conventional modality distillation that performs them independently, this helps to capture the valuable representation that can assist the final model inference directly. Specifically, we propose the joint adaptation network for the modality transfer task to preserve the privileged information. This addresses the representation heterogeneity caused by input discrepancy via the joint distribution adaptation. Then, we introduce the cross translation network for the modality fusion task to aggregate the restored and available modality features. It leverages the parameters-sharing strategy to capture the cross-modal cues explicitly. Extensive experiments on RGB-D classification and segmentation tasks demonstrate the proposed multimodal inheritance framework can overcome the problem of incomplete modality input in various scenes and achieve state-of-the-art performance.




Abstract:Multimodal learning has shown great potentials in numerous scenes and attracts increasing interest recently. However, it often encounters the problem of missing modality data and thus suffers severe performance degradation in practice. To this end, we propose a general framework called MMANet to assist incomplete multimodal learning. It consists of three components: the deployment network used for inference, the teacher network transferring comprehensive multimodal information to the deployment network, and the regularization network guiding the deployment network to balance weak modality combinations. Specifically, we propose a novel margin-aware distillation (MAD) to assist the information transfer by weighing the sample contribution with the classification uncertainty. This encourages the deployment network to focus on the samples near decision boundaries and acquire the refined inter-class margin. Besides, we design a modality-aware regularization (MAR) algorithm to mine the weak modality combinations and guide the regularization network to calculate prediction loss for them. This forces the deployment network to improve its representation ability for the weak modality combinations adaptively. Finally, extensive experiments on multimodal classification and segmentation tasks demonstrate that our MMANet outperforms the state-of-the-art significantly. Code is available at: https://github.com/shicaiwei123/MMANet




Abstract:The extensive damage caused by malware requires anti-malware systems to be constantly improved to prevent new threats. The current trend in malware detection is to employ machine learning models to aid in the classification process. We propose a new dataset with the objective of improving current anti-malware systems. The focus of this dataset is to improve host based intrusion detection systems by providing API call sequences for thousands of malware samples executed in Windows 10 virtual machines. A tutorial on how to create and expand this dataset is provided along with a benchmark demonstrating how to use this dataset to classify malware. The data contains long sequences of API calls for each sample, and in order to create models that can be deployed in resource constrained devices, three feature selection methods were tested. The principal innovation, however, lies in the multi-label classification system in which one sequence of APIs can be tagged with multiple labels describing its malicious behaviours.