Abstract:Faithfully reconstructing textured shapes and physical properties from videos presents an intriguing yet challenging problem. Significant efforts have been dedicated to advancing such a system identification problem in this area. Previous methods often rely on heavy optimization pipelines with a differentiable simulator and renderer to estimate physical parameters. However, these approaches frequently necessitate extensive hyperparameter tuning for each scene and involve a costly optimization process, which limits both their practicality and generalizability. In this work, we propose a novel framework, Vid2Sim, a generalizable video-based approach for recovering geometry and physical properties through a mesh-free reduced simulation based on Linear Blend Skinning (LBS), offering high computational efficiency and versatile representation capability. Specifically, Vid2Sim first reconstructs the observed configuration of the physical system from video using a feed-forward neural network trained to capture physical world knowledge. A lightweight optimization pipeline then refines the estimated appearance, geometry, and physical properties to closely align with video observations within just a few minutes. Additionally, after the reconstruction, Vid2Sim enables high-quality, mesh-free simulation with high efficiency. Extensive experiments demonstrate that our method achieves superior accuracy and efficiency in reconstructing geometry and physical properties from video data.
Abstract:Recently, significant advancements have been made in time-series forecasting research, with an increasing focus on analyzing the inherent characteristics of time-series data, rather than solely focusing on designing forecasting models.In this paper, we follow this trend and carefully examine previous work to propose an efficient time series forecasting model based on linear models. The model consists of two important core components: (1) the integration of different semantics brought by single-channel and multi-channel data for joint forecasting; (2) the use of a novel loss function that replaces the traditional MSE loss and MAE loss to achieve higher forecasting accuracy.On widely-used benchmark time series datasets, our model not only outperforms the current SOTA, but is also 10 $\times$ speedup and has fewer parameters than the latest SOTA model.