Abstract:Occlusion poses a major challenge for person re-identification (ReID). Existing approaches typically rely on outside tools to infer visible body parts, which may be suboptimal in terms of both computational efficiency and ReID accuracy. In particular, they may fail when facing complex occlusions, such as those between pedestrians. Accordingly, in this paper, we propose a novel method named Quality-aware Part Models (QPM) for occlusion-robust ReID. First, we propose to jointly learn part features and predict part quality scores. As no quality annotation is available, we introduce a strategy that automatically assigns low scores to occluded body parts, thereby weakening the impact of occluded body parts on ReID results. Second, based on the predicted part quality scores, we propose a novel identity-aware spatial attention (ISA) module. In this module, a coarse identity-aware feature is utilized to highlight pixels of the target pedestrian, so as to handle the occlusion between pedestrians. Third, we design an adaptive and efficient approach for generating global features from common non-occluded regions with respect to each image pair. This design is crucial, but is often ignored by existing methods. QPM has three key advantages: 1) it does not rely on any outside tools in either the training or inference stages; 2) it handles occlusions caused by both objects and other pedestrians;3) it is highly computationally efficient. Experimental results on four popular databases for occluded ReID demonstrate that QPM consistently outperforms state-of-the-art methods by significant margins. The code of QPM will be released.
Abstract:Unsupervised Domain Adaptive (UDA) object re-identification (Re-ID) aims at adapting a model trained on a labeled source domain to an unlabeled target domain. State-of-the-art object Re-ID approaches adopt clustering algorithms to generate pseudo-labels for the unlabeled target domain. However, the inevitable label noise caused by the clustering procedure significantly degrades the discriminative power of Re-ID model. To address this problem, we propose an uncertainty-aware clustering framework (UCF) for UDA tasks. First, a novel hierarchical clustering scheme is proposed to promote clustering quality. Second, an uncertainty-aware collaborative instance selection method is introduced to select images with reliable labels for model training. Combining both techniques effectively reduces the impact of noisy labels. In addition, we introduce a strong baseline that features a compact contrastive loss. Our UCF method consistently achieves state-of-the-art performance in multiple UDA tasks for object Re-ID, and significantly reduces the gap between unsupervised and supervised Re-ID performance. In particular, the performance of our unsupervised UCF method in the MSMT17$\to$Market1501 task is better than that of the fully supervised setting on Market1501. The code of UCF is available at https://github.com/Wang-pengfei/UCF.
Abstract:Text-to-image person re-identification (ReID) aims to search for images containing a person of interest using textual descriptions. However, due to the significant modality gap and the large intra-class variance in textual descriptions, text-to-image ReID remains a challenging problem. Accordingly, in this paper, we propose a Semantically Self-Aligned Network (SSAN) to handle the above problems. First, we propose a novel method that automatically extracts semantically aligned part-level features from the two modalities. Second, we design a multi-view non-local network that captures the relationships between body parts, thereby establishing better correspondences between body parts and noun phrases. Third, we introduce a Compound Ranking (CR) loss that makes use of textual descriptions for other images of the same identity to provide extra supervision, thereby effectively reducing the intra-class variance in textual features. Finally, to expedite future research in text-to-image ReID, we build a new database named ICFG-PEDES. Extensive experiments demonstrate that SSAN outperforms state-of-the-art approaches by significant margins. Both the new ICFG-PEDES database and the SSAN code are available at https://github.com/zifyloo/SSAN.
Abstract:The past few years have witnessed great progress in the domain of face recognition thanks to advances in deep learning. However, cross pose face recognition remains a significant challenge. It is difficult for many deep learning algorithms to narrow the performance gap caused by pose variations; the main reasons for this relate to the intra-class discrepancy between face images in different poses and the pose imbalances of training datasets. Learning pose-robust features by traversing to the feature space of frontal faces provides an effective and cheap way to alleviate this problem. In this paper, we present a method for progressively transforming profile face representations to the canonical pose with an attentive pair-wise loss. Firstly, to reduce the difficulty of directly transforming the profile face features into a frontal pose, we propose to learn the feature residual between the source pose and its nearby pose in a block-byblock fashion, and thus traversing to the feature space of a smaller pose by adding the learned residual. Secondly, we propose an attentive pair-wise loss to guide the feature transformation progressing in the most effective direction. Finally, our proposed progressive module and attentive pair-wise loss are light-weight and easy to implement, adding only about 7:5% extra parameters. Evaluations on the CFP and CPLFW datasets demonstrate the superiority of our proposed method. Code is available at https://github.com/hjy1312/AGPM.
Abstract:Modern human-object interaction (HOI) detection approaches can be divided into one-stage methods and twostage ones. One-stage models are more efficient due to their straightforward architectures, but the two-stage models are still advantageous in accuracy. Existing one-stage models usually begin by detecting predefined interaction areas or points, and then attend to these areas only for interaction prediction; therefore, they lack reasoning steps that dynamically search for discriminative cues. In this paper, we propose a novel one-stage method, namely Glance and Gaze Network (GGNet), which adaptively models a set of actionaware points (ActPoints) via glance and gaze steps. The glance step quickly determines whether each pixel in the feature maps is an interaction point. The gaze step leverages feature maps produced by the glance step to adaptively infer ActPoints around each pixel in a progressive manner. Features of the refined ActPoints are aggregated for interaction prediction. Moreover, we design an actionaware approach that effectively matches each detected interaction with its associated human-object pair, along with a novel hard negative attentive loss to improve the optimization of GGNet. All the above operations are conducted simultaneously and efficiently for all pixels in the feature maps. Finally, GGNet outperforms state-of-the-art methods by significant margins on both V-COCO and HICODET benchmarks. Code of GGNet is available at https: //github.com/SherlockHolmes221/GGNet.
Abstract:In this paper, we study an arguably least restrictive setting of domain adaptation in a sense of practical deployment, where only the interface of source model is available to the target domain, and where the label-space relations between the two domains are allowed to be different and unknown. We term such a setting as Universal Black-Box Domain Adaptation (UB$^2$DA). The great promise that UB$^2$DA makes, however, brings significant learning challenges, since domain adaptation can only rely on the predictions of unlabeled target data in a partially overlapped label space, by accessing the interface of source model. To tackle the challenges, we first note that the learning task can be converted as two subtasks of in-class\footnote{In this paper we use in-class (out-class) to describe the classes observed (not observed) in the source black-box model.} discrimination and out-class detection, which can be respectively learned by model distillation and entropy separation. We propose to unify them into a self-training framework, regularized by consistency of predictions in local neighborhoods of target samples. Our framework is simple, robust, and easy to be optimized. Experiments on domain adaptation benchmarks show its efficacy. Notably, by accessing the interface of source model only, our framework outperforms existing methods of universal domain adaptation that make use of source data and/or source models, with a newly proposed (and arguably more reasonable) metric of H-score, and performs on par with them with the metric of averaged class accuracy.
Abstract:Nucleus segmentation is a challenging task due to the crowded distribution and blurry boundaries of nuclei. Recent approaches represent nuclei by means of polygons to differentiate between touching and overlapping nuclei and have accordingly achieved promising performance. Each polygon is represented by a set of centroid-to-boundary distances, which are in turn predicted by features of the centroid pixel for a single nucleus. However, using the centroid pixel alone does not provide sufficient contextual information for robust prediction. To handle this problem, we propose a Context-aware Polygon Proposal Network (CPP-Net) for nucleus segmentation. First, we sample a point set rather than one single pixel within each cell for distance prediction. This strategy substantially enhances contextual information and thereby improves the robustness of the prediction. Second, we propose a Confidence-based Weighting Module, which adaptively fuses the predictions from the sampled point set. Third, we introduce a novel Shape-Aware Perceptual (SAP) loss that constrains the shape of the predicted polygons. Here, the SAP loss is based on an additional network that is pre-trained by means of mapping the centroid probability map and the pixel-to-boundary distance maps to a different nucleus representation. Extensive experiments justify the effectiveness of each component in the proposed CPP-Net. Finally, CPP-Net is found to achieve state-of-the-art performance on three publicly available databases, namely DSB2018, BBBC06, and PanNuke. Code of this paper will be released.
Abstract:Existing part-aware person re-identification methods typically employ two separate steps: namely, body part detection and part-level feature extraction. However, part detection introduces an additional computational cost and is inherently challenging for low-quality images. Accordingly, in this work, we propose a simple framework named Batch Coherence-Driven Network (BCD-Net) that bypasses body part detection during both the training and testing phases while still learning semantically aligned part features. Our key observation is that the statistics in a batch of images are stable, and therefore that batch-level constraints are robust. First, we introduce a batch coherence-guided channel attention (BCCA) module that highlights the relevant channels for each respective part from the output of a deep backbone model. We investigate channelpart correspondence using a batch of training images, then impose a novel batch-level supervision signal that helps BCCA to identify part-relevant channels. Second, the mean position of a body part is robust and consequently coherent between batches throughout the training process. Accordingly, we introduce a pair of regularization terms based on the semantic consistency between batches. The first term regularizes the high responses of BCD-Net for each part on one batch in order to constrain it within a predefined area, while the second encourages the aggregate of BCD-Nets responses for all parts covering the entire human body. The above constraints guide BCD-Net to learn diverse, complementary, and semantically aligned part-level features. Extensive experimental results demonstrate that BCDNet consistently achieves state-of-the-art performance on four large-scale ReID benchmarks.
Abstract:Human-Object Interaction (HOI) detection is important to human-centric scene understanding tasks. Existing works tend to assume that the same verb has similar visual characteristics in different HOI categories, an approach that ignores the diverse semantic meanings of the verb. To address this issue, in this paper, we propose a novel Polysemy Deciphering Network (PD-Net) that decodes the visual polysemy of verbs for HOI detection in three distinct ways. First, we refine features for HOI detection to be polysemyaware through the use of two novel modules: namely, Language Prior-guided Channel Attention (LPCA) and Language Prior-based Feature Augmentation (LPFA). LPCA highlights important elements in human and object appearance features for each HOI category to be identified; moreover, LPFA augments human pose and spatial features for HOI detection using language priors, enabling the verb classifiers to receive language hints that reduce intra-class variation for the same verb. Second, we introduce a novel Polysemy-Aware Modal Fusion module (PAMF), which guides PD-Net to make decisions based on feature types deemed more important according to the language priors. Third, we propose to relieve the verb polysemy problem through sharing verb classifiers for semantically similar HOI categories. Furthermore, to expedite research on the verb polysemy problem, we build a new benchmark dataset named HOI-VerbPolysemy (HOIVP), which includes common verbs (predicates) that have diverse semantic meanings in the real world. Finally, through deciphering the visual polysemy of verbs, our approach is demonstrated to outperform state-of-the-art methods by significant margins on the HICO-DET, V-COCO, and HOI-VP databases. Code and data in this paper will be released at https://github.com/MuchHair/PD-Net.
Abstract:Nucleus segmentation is an important task in medical image analysis. However, machine learning models cannot perform well because there are large amount of clusters of crowded nuclei. To handle this problem, existing approaches typically resort to sophisticated hand-crafted post-processing strategies; therefore, they are vulnerable to the variation of post-processing hyper-parameters. Accordingly, in this paper, we devise a Boundary-assisted Region Proposal Network (BRP-Net) that achieves robust instance-level nucleus segmentation. First, we propose a novel Task-aware Feature Encoding (TAFE) network that efficiently extracts respective high-quality features for semantic segmentation and instance boundary detection tasks. This is achieved by carefully considering the correlation and differences between the two tasks. Second, coarse nucleus proposals are generated based on the predictions of the above two tasks. Third, these proposals are fed into instance segmentation networks for more accurate prediction. Experimental results demonstrate that the performance of BRP-Net is robust to the variation of post-processing hyper-parameters. Furthermore, BRP-Net achieves state-of-the-art performances on both the Kumar and CPM17 datasets. The code of BRP-Net will be released at https://github.com/csccsccsccsc/brpnet.