Abstract:Auscultation, particularly heart sound, is a non-invasive technique that provides essential vital sign information. Recently, self-supervised acoustic representation foundation models (FMs) have been proposed to offer insights into acoustics-based vital signs. However, there has been little exploration of the extent to which auscultation is encoded in these pre-trained FM representations. In this work, using a publicly available phonocardiogram (PCG) dataset and a heart rate (HR) estimation model, we conduct a layer-wise investigation of six acoustic representation FMs: HuBERT, wav2vec2, wavLM, Whisper, Contrastive Language-Audio Pretraining (CLAP), and an in-house CLAP model. Additionally, we implement the baseline method from Nie et al., 2024 (which relies on acoustic features) and show that overall, representation vectors from pre-trained foundation models (FMs) offer comparable performance to the baseline. Notably, HR estimation using the representations from the audio encoder of the in-house CLAP model outperforms the results obtained from the baseline, achieving a lower mean absolute error (MAE) across various train/validation/test splits despite the domain mismatch.
Abstract:Perceptual voice quality dimensions describe key characteristics of atypical speech and other speech modulations. Here we develop and evaluate voice quality models for seven voice and speech dimensions (intelligibility, imprecise consonants, harsh voice, naturalness, monoloudness, monopitch, and breathiness). Probes were trained on the public Speech Accessibility (SAP) project dataset with 11,184 samples from 434 speakers, using embeddings from frozen pre-trained models as features. We found that our probes had both strong performance and strong generalization across speech elicitation categories in the SAP dataset. We further validated zero-shot performance on additional datasets, encompassing unseen languages and tasks: Italian atypical speech, English atypical speech, and affective speech. The strong zero-shot performance and the interpretability of results across an array of evaluations suggests the utility of using voice quality dimensions in speaking style-related tasks.
Abstract:This work investigates pretrained audio representations for few shot Sound Event Detection. We specifically address the task of few shot detection of novel acoustic sequences, or sound events with semantically meaningful temporal structure, without assuming access to non-target audio. We develop procedures for pretraining suitable representations, and methods which transfer them to our few shot learning scenario. Our experiments evaluate the general purpose utility of our pretrained representations on AudioSet, and the utility of proposed few shot methods via tasks constructed from real-world acoustic sequences. Our pretrained embeddings are suitable to the proposed task, and enable multiple aspects of our few shot framework.
Abstract:Pre-trained model representations have demonstrated state-of-the-art performance in speech recognition, natural language processing, and other applications. Speech models, such as Bidirectional Encoder Representations from Transformers (BERT) and Hidden units BERT (HuBERT), have enabled generating lexical and acoustic representations to benefit speech recognition applications. We investigated the use of pre-trained model representations for estimating dimensional emotions, such as activation, valence, and dominance, from speech. We observed that while valence may rely heavily on lexical representations, activation and dominance rely mostly on acoustic information. In this work, we used multi-modal fusion representations from pre-trained models to generate state-of-the-art speech emotion estimation, and we showed a 100% and 30% relative improvement in concordance correlation coefficient (CCC) on valence estimation compared to standard acoustic and lexical baselines. Finally, we investigated the robustness of pre-trained model representations against noise and reverberation degradation and noticed that lexical and acoustic representations are impacted differently. We discovered that lexical representations are more robust to distortions compared to acoustic representations, and demonstrated that knowledge distillation from a multi-modal model helps to improve the noise-robustness of acoustic-based models.