Abstract:Diffusion models are widely used in applications ranging from image generation to inverse problems. However, training diffusion models typically requires clean ground-truth images, which are unavailable in many applications. We introduce the Measurement Score-based diffusion Model (MSM), a novel framework that learns partial measurement scores using only noisy and subsampled measurements. MSM models the distribution of full measurements as an expectation over partial scores induced by randomized subsampling. To make the MSM representation computationally efficient, we also develop a stochastic sampling algorithm that generates full images by using a randomly selected subset of partial scores at each step. We additionally propose a new posterior sampling method for solving inverse problems that reconstructs images using these partial scores. We provide a theoretical analysis that bounds the Kullback-Leibler divergence between the distributions induced by full and stochastic sampling, establishing the accuracy of the proposed algorithm. We demonstrate the effectiveness of MSM on natural images and multi-coil MRI, showing that it can generate high-quality images and solve inverse problems -- all without access to clean training data. Code is available at https://github.com/wustl-cig/MSM.
Abstract:Plug-and-play (PnP) methods are extensively used for solving imaging inverse problems by integrating physical measurement models with pre-trained deep denoisers as priors. Score-based diffusion models (SBMs) have recently emerged as a powerful framework for image generation by training deep denoisers to represent the score of the image prior. While both PnP and SBMs use deep denoisers, the score-based nature of PnP is unexplored in the literature due to its distinct origins rooted in proximal optimization. This letter introduces a novel view of PnP as a score-based method, a perspective that enables the re-use of powerful SBMs within classical PnP algorithms without retraining. We present a set of mathematical relationships for adapting popular SBMs as priors within PnP. We show that this approach enables a direct comparison between PnP and SBM-based reconstruction methods using the same neural network as the prior. Code is available at https://github.com/wustl-cig/score_pnp.
Abstract:We present a simple template for designing generative diffusion model algorithms based on an interpretation of diffusion sampling as a sequence of random walks. Score-based diffusion models are widely used to generate high-quality images. Diffusion models have also been shown to yield state-of-the-art performance in many inverse problems. While these algorithms are often surprisingly simple, the theory behind them is not, and multiple complex theoretical justifications exist in the literature. Here, we provide a simple and largely self-contained theoretical justification for score-based-diffusion models that avoids using the theory of Markov chains or reverse diffusion, instead centering the theory of random walks and Tweedie's formula. This approach leads to unified algorithmic templates for network training and sampling. In particular, these templates cleanly separate training from sampling, e.g., the noise schedule used during training need not match the one used during sampling. We show that several existing diffusion models correspond to particular choices within this template and demonstrate that other, more straightforward algorithmic choices lead to effective diffusion models. The proposed framework has the added benefit of enabling conditional sampling without any likelihood approximation.