Abstract:The advancement of data-driven artificial intelligence (AI), particularly machine learning, heavily depends on large-scale benchmarks. Despite remarkable progress across domains ranging from pattern recognition to intelligent decision-making in recent decades, exemplified by breakthroughs in board games, card games, and electronic sports games, there remains a pressing need for more challenging benchmarks to drive further research. To this end, this paper proposes OpenGuanDan, a novel benchmark that enables both efficient simulation of GuanDan (a popular four-player, multi-round Chinese card game) and comprehensive evaluation of both learning-based and rule-based GuanDan AI agents. OpenGuanDan poses a suite of nontrivial challenges, including imperfect information, large-scale information set and action spaces, a mixed learning objective involving cooperation and competition, long-horizon decision-making, variable action spaces, and dynamic team composition. These characteristics make it a demanding testbed for existing intelligent decision-making methods. Moreover, the independent API for each player allows human-AI interactions and supports integration with large language models. Empirically, we conduct two types of evaluations: (1) pairwise competitions among all GuanDan AI agents, and (2) human-AI matchups. Experimental results demonstrate that while current learning-based agents substantially outperform rule-based counterparts, they still fall short of achieving superhuman performance, underscoring the need for continued research in multi-agent intelligent decision-making domain. The project is publicly available at https://github.com/GameAI-NJUPT/OpenGuanDan.
Abstract:Diffusion models have achieved remarkable progress in image generation, but their increasing deployment raises serious concerns about privacy. In particular, fine-tuned models are highly vulnerable, as they are often fine-tuned on small and private datasets. Membership inference attacks (MIAs) are used to assess privacy risks by determining whether a specific sample was part of a model's training data. Existing MIAs against diffusion models either assume obtaining the intermediate results or require auxiliary datasets for training the shadow model. In this work, we utilized a critical yet overlooked vulnerability: the widely used noise schedules fail to fully eliminate semantic information in the images, resulting in residual semantic signals even at the maximum noise step. We empirically demonstrate that the fine-tuned diffusion model captures hidden correlations between the residual semantics in initial noise and the original images. Building on this insight, we propose a simple yet effective membership inference attack, which injects semantic information into the initial noise and infers membership by analyzing the model's generation result. Extensive experiments demonstrate that the semantic initial noise can strongly reveal membership information, highlighting the vulnerability of diffusion models to MIAs.
Abstract:In recent years, epidemic policy-making models are increasingly being used to provide reference for governors on prevention and control policies against catastrophic epidemics such as SARS, H1N1 and COVID-19. Existing studies are currently constrained by two issues: First, previous methods develop policies based on effect evaluation, since few of factors in real-world decision-making can be modeled, the output policies will then easily become extreme. Second, the subjectivity and cognitive limitation of human make the historical policies not always optimal for the training of decision models. To these ends, we present a novel Policy Combination Synthesis (PCS) model for epidemic policy-making. Specially, to prevent extreme decisions, we introduce adversarial learning between the model-made policies and the real policies to force the output policies to be more human-liked. On the other hand, to minimize the impact of sub-optimal historical policies, we employ contrastive learning to let the model draw on experience from the best historical policies under similar scenarios. Both adversarial and contrastive learning are adaptive based on the comprehensive effects of real policies to ensure the model always learns useful information. Extensive experiments on real-world data prove the effectiveness of the proposed model.