Abstract:The evolution of Text-to-video (T2V) generative models, trained on large-scale datasets, has been marked by significant progress. However, the sensitivity of T2V generative models to input prompts highlights the critical role of prompt design in influencing generative outcomes. Prior research has predominantly relied on Large Language Models (LLMs) to align user-provided prompts with the distribution of training prompts, albeit without tailored guidance encompassing prompt vocabulary and sentence structure nuances. To this end, we introduce \textbf{RAPO}, a novel \textbf{R}etrieval-\textbf{A}ugmented \textbf{P}rompt \textbf{O}ptimization framework. In order to address potential inaccuracies and ambiguous details generated by LLM-generated prompts. RAPO refines the naive prompts through dual optimization branches, selecting the superior prompt for T2V generation. The first branch augments user prompts with diverse modifiers extracted from a learned relational graph, refining them to align with the format of training prompts via a fine-tuned LLM. Conversely, the second branch rewrites the naive prompt using a pre-trained LLM following a well-defined instruction set. Extensive experiments demonstrate that RAPO can effectively enhance both the static and dynamic dimensions of generated videos, demonstrating the significance of prompt optimization for user-provided prompts. Project website: \href{https://whynothaha.github.io/Prompt_optimizer/RAPO.html}{GitHub}.
Abstract:Object placement aims to determine the appropriate placement (\emph{e.g.}, location and size) of a foreground object when placing it on the background image. Most previous works are limited by small-scale labeled dataset, which hinders the real-world application of object placement. In this work, we devise a semi-supervised framework which can exploit large-scale unlabeled dataset to promote the generalization ability of discriminative object placement models. The discriminative models predict the rationality label for each foreground placement given a foreground-background pair. To better leverage the labeled data, under the semi-supervised framework, we further propose to transfer the knowledge of rationality variation, \emph{i.e.}, whether the change of foreground placement would result in the change of rationality label, from labeled data to unlabeled data. Extensive experiments demonstrate that our framework can effectively enhance the generalization ability of discriminative object placement models.