Abstract:Early detection of fake news is critical for mitigating its rapid dissemination on social media, which can severely undermine public trust and social stability. Recent advancements show that incorporating propagation dynamics can significantly enhance detection performance compared to previous content-only approaches. However, this remains challenging at early stages due to the absence of observable propagation signals. To address this limitation, we propose AVOID, an \underline{a}gent-driven \underline{v}irtual pr\underline{o}pagat\underline{i}on for early fake news \underline{d}etection. AVOID reformulates early detection as a new paradigm of evidence generation, where propagation signals are actively simulated rather than passively observed. Leveraging LLM-powered agents with differentiated roles and data-driven personas, AVOID realistically constructs early-stage diffusion behaviors without requiring real propagation data. The resulting virtual trajectories provide complementary social evidence that enriches content-based detection, while a denoising-guided fusion strategy aligns simulated propagation with content semantics. Extensive experiments on benchmark datasets demonstrate that AVOID consistently outperforms state-of-the-art baselines, highlighting the effectiveness and practical value of virtual propagation augmentation for early fake news detection. The code and data are available at https://github.com/Ironychen/AVOID.
Abstract:This paper reveals that LLM-powered agents exhibit not only demographic bias (e.g., gender, religion) but also intergroup bias under minimal "us" versus "them" cues. When such group boundaries align with the agent-human divide, a new bias risk emerges: agents may treat other AI agents as the ingroup and humans as the outgroup. To examine this risk, we conduct a controlled multi-agent social simulation and find that agents display consistent intergroup bias in an all-agent setting. More critically, this bias persists even in human-facing interactions when agents are uncertain about whether the counterpart is truly human, revealing a belief-dependent fragility in bias suppression toward humans. Motivated by this observation, we identify a new attack surface rooted in identity beliefs and formalize a Belief Poisoning Attack (BPA) that can manipulate agent identity beliefs and induce outgroup bias toward humans. Extensive experiments demonstrate both the prevalence of agent intergroup bias and the severity of BPA across settings, while also showing that our proposed defenses can mitigate the risk. These findings are expected to inform safer agent design and motivate more robust safeguards for human-facing agents.