Abstract:Wearable Internet of Things (IoT) devices are gaining ground for continuous physiological data acquisition and health monitoring. These physiological signals can be used for security applications to achieve continuous authentication and user convenience due to passive data acquisition. This paper investigates an electrocardiogram (ECG) based biometric user authentication system using features derived from the Convolutional Neural Network (CNN) and self-supervised contrastive learning. Contrastive learning enables us to use large unlabeled datasets to train the model and establish its generalizability. We propose approaches enabling the CNN encoder to extract appropriate features that distinguish the user from other subjects. When evaluated using the PTB ECG database with 290 subjects, the proposed technique achieved an authentication accuracy of 99.15%. To test its generalizability, we applied the model to two new datasets, the MIT-BIH Arrhythmia Database and the ECG-ID Database, achieving over 98.5% accuracy without any modifications. Furthermore, we show that repeating the authentication step three times can increase accuracy to nearly 100% for both PTBDB and ECGIDDB. This paper also presents model optimizations for embedded device deployment, which makes the system more relevant to real-world scenarios. To deploy our model in IoT edge sensors, we optimized the model complexity by applying quantization and pruning. The optimized model achieves 98.67% accuracy on PTBDB, with 0.48% accuracy loss and 62.6% CPU cycles compared to the unoptimized model. An accuracy-vs-time-complexity tradeoff analysis is performed, and results are presented for different optimization levels.
Abstract:Noise is a vital factor in determining the accuracy of processing the information of the quantum channel. One must consider classical noise effects associated with quantum noise sources for more realistic modelling of quantum channels. A hybrid quantum noise model incorporating both quantum Poisson noise and classical additive white Gaussian noise (AWGN) can be interpreted as an infinite mixture of Gaussians with weightage from the Poisson distribution. The entropy measure of this function is difficult to calculate. This research developed how the infinite mixture can be well approximated by a finite mixture distribution depending on the Poisson parametric setting compared to the number of mixture components. The mathematical analysis of the characterization of hybrid quantum noise has been demonstrated based on Gaussian and Poisson parametric analysis. This helps in the pattern analysis of the parametric values of the component distribution, and it also helps in the calculation of hybrid noise entropy to understand hybrid quantum noise better.
Abstract:This work contributes to the advancement of quantum communication by visualizing hybrid quantum noise in higher dimensions and optimizing the capacity of the quantum channel by using machine learning (ML). Employing the expectation maximization (EM) algorithm, the quantum channel parameters are iteratively adjusted to estimate the channel capacity, facilitating the categorization of quantum noise data in higher dimensions into a finite number of clusters. In contrast to previous investigations that represented the model in lower dimensions, our work describes the quantum noise as a Gaussian Mixture Model (GMM) with mixing weights derived from a Poisson distribution. The objective was to model the quantum noise using a finite mixture of Gaussian components while preserving the mixing coefficients from the Poisson distribution. Approximating the infinite Gaussian mixture with a finite number of components makes it feasible to visualize clusters of quantum noise data without modifying the original probability density function. By implementing the EM algorithm, the research fine-tuned the channel parameters, identified optimal clusters, improved channel capacity estimation, and offered insights into the characteristics of quantum noise within an ML framework.
Abstract:Unsupervised learning methods have become increasingly important in deep learning due to their demonstrated large utilization of datasets and higher accuracy in computer vision and natural language processing tasks. There is a growing trend to extend unsupervised learning methods to other domains, which helps to utilize a large amount of unlabelled data. This paper proposes an unsupervised pre-training technique based on masked autoencoder (MAE) for electrocardiogram (ECG) signals. In addition, we propose a task-specific fine-tuning to form a complete framework for ECG analysis. The framework is high-level, universal, and not individually adapted to specific model architectures or tasks. Experiments are conducted using various model architectures and large-scale datasets, resulting in an accuracy of 94.39% on the MITDB dataset for ECG arrhythmia classification task. The result shows a better performance for the classification of previously unseen data for the proposed approach compared to fully supervised methods.
Abstract:The objective of this work is to investigate complementary features which can aid the quintessential Mel frequency cepstral coefficients (MFCCs) in the task of closed, limited set word recognition for non-native English speakers of different mother-tongues. Unlike the MFCCs, which are derived from the spectral energy of the speech signal, the proposed frequency-centroids (FCs) encapsulate the spectral centres of the different bands of the speech spectrum, with the bands defined by the Mel filterbank. These features, in combination with the MFCCs, are observed to provide relative performance improvement in English word recognition, particularly under varied noisy conditions. A two-stage Convolution Neural Network (CNN) is used to model the features of the English words uttered with Arabic, French and Spanish accents.
Abstract:Heart Disease has become one of the most serious diseases that has a significant impact on human life. It has emerged as one of the leading causes of mortality among the people across the globe during the last decade. In order to prevent patients from further damage, an accurate diagnosis of heart disease on time is an essential factor. Recently we have seen the usage of non-invasive medical procedures, such as artificial intelligence-based techniques in the field of medical. Specially machine learning employs several algorithms and techniques that are widely used and are highly useful in accurately diagnosing the heart disease with less amount of time. However, the prediction of heart disease is not an easy task. The increasing size of medical datasets has made it a complicated task for practitioners to understand the complex feature relations and make disease predictions. Accordingly, the aim of this research is to identify the most important risk-factors from a highly dimensional dataset which helps in the accurate classification of heart disease with less complications. For a broader analysis, we have used two heart disease datasets with various medical features. The classification results of the benchmarked models proved that there is a high impact of relevant features on the classification accuracy. Even with a reduced number of features, the performance of the classification models improved significantly with a reduced training time as compared with models trained on full feature set.
Abstract:Engagement is an essential indicator of the Quality-of-Learning Experience (QoLE) and plays a major role in developing intelligent educational interfaces. The number of people learning through Massively Open Online Courses (MOOCs) and other online resources has been increasing rapidly because they provide us with the flexibility to learn from anywhere at any time. This provides a good learning experience for the students. However, such learning interface requires the ability to recognize the level of engagement of the students for a holistic learning experience. This is useful for both students and educators alike. However, understanding engagement is a challenging task, because of its subjectivity and ability to collect data. In this paper, we propose a variety of models that have been trained on an open-source dataset of video screengrabs. Our non-deep learning models are based on the combination of popular algorithms such as Histogram of Oriented Gradient (HOG), Support Vector Machine (SVM), Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF). The deep learning methods include Densely Connected Convolutional Networks (DenseNet-121), Residual Network (ResNet-18) and MobileNetV1. We show the performance of each models using a variety of metrics such as the Gini Index, Adjusted F-Measure (AGF), and Area Under receiver operating characteristic Curve (AUC). We use various dimensionality reduction techniques such as Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) to understand the distribution of data in the feature sub-space. Our work will thereby assist the educators and students in obtaining a fruitful and efficient online learning experience.
Abstract:Stroke is widely considered as the second most common cause of mortality. The adverse consequences of stroke have led to global interest and work for improving the management and diagnosis of stroke. Various techniques for data mining have been used globally for accurate prediction of occurrence of stroke based on the risk factors that are associated with the electronic health care records (EHRs) of the patients. In particular, EHRs routinely contain several thousands of features and most of them are redundant and irrelevant that need to be discarded to enhance the prediction accuracy. The choice of feature-selection methods can help in improving the prediction accuracy of the model and efficient data management of the archived input features. In this paper, we systematically analyze the various features in EHR records for the detection of stroke. We propose a novel rough-set based technique for ranking the importance of the various EHR records in detecting stroke. Unlike the conventional rough-set techniques, our proposed technique can be applied on any dataset that comprises binary feature sets. We evaluated our proposed method in a publicly available dataset of EHR, and concluded that age, average glucose level, heart disease, and hypertension were the most essential attributes for detecting stroke in patients. Furthermore, we benchmarked the proposed technique with other popular feature-selection techniques. We obtained the best performance in ranking the importance of individual features in detecting stroke.
Abstract:Speech recognition systems have made tremendous progress since the last few decades. They have developed significantly in identifying the speech of the speaker. However, there is a scope of improvement in speech recognition systems in identifying the nuances and accents of a speaker. It is known that any specific natural language may possess at least one accent. Despite the identical word phonemic composition, if it is pronounced in different accents, we will have sound waves, which are different from each other. Differences in pronunciation, in accent and intonation of speech in general, create one of the most common problems of speech recognition. If there are a lot of accents in language we should create the acoustic model for each separately. We carry out a systematic analysis of the problem in the accurate classification of accents. We use traditional machine learning techniques and convolutional neural networks, and show that the classical techniques are not sufficiently efficient to solve this problem. Using spectrograms of speech signals, we propose a multi-class classification framework for accent recognition. In this paper, we focus our attention on the French accent. We also identify its limitation by understanding the impact of French idiosyncrasies on its spectrograms.
Abstract:Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions.