Shammie
Abstract:AI has achieved remarkable mastery over games such as Chess, Go, and Poker, and even Jeopardy, but the rich variety of standardized exams has remained a landmark challenge. Even in 2016, the best AI system achieved merely 59.3% on an 8th Grade science exam challenge. This paper reports unprecedented success on the Grade 8 New York Regents Science Exam, where for the first time a system scores more than 90% on the exam's non-diagram, multiple choice (NDMC) questions. In addition, our Aristo system, building upon the success of recent language models, exceeded 83% on the corresponding Grade 12 Science Exam NDMC questions. The results, on unseen test questions, are robust across different test years and different variations of this kind of test. They demonstrate that modern NLP methods can result in mastery on this task. While not a full solution to general question-answering (the questions are multiple choice, and the domain is restricted to 8th Grade science), it represents a significant milestone for the field.
Abstract:We propose a novel method for exploiting the semantic structure of text to answer multiple-choice questions. The approach is especially suitable for domains that require reasoning over a diverse set of linguistic constructs but have limited training data. To address these challenges, we present the first system, to the best of our knowledge, that reasons over a wide range of semantic abstractions of the text, which are derived using off-the-shelf, general-purpose, pre-trained natural language modules such as semantic role labelers, coreference resolvers, and dependency parsers. Representing multiple abstractions as a family of graphs, we translate question answering (QA) into a search for an optimal subgraph that satisfies certain global and local properties. This formulation generalizes several prior structured QA systems. Our system, SEMANTICILP, demonstrates strong performance on two domains simultaneously. In particular, on a collection of challenging science QA datasets, it outperforms various state-of-the-art approaches, including neural models, broad coverage information retrieval, and specialized techniques using structured knowledge bases, by 2%-6%.
Abstract:Question Answering (QA) naturally reduces to an entailment problem, namely, verifying whether some text entails the answer to a question. However, for multi-hop QA tasks, which require reasoning with multiple sentences, it remains unclear how best to utilize entailment models pre-trained on large scale datasets such as SNLI, which are based on sentence pairs. We introduce Multee, a general architecture that can effectively use entailment models for multi-hop QA tasks. Multee uses (i) a local module that helps locate important sentences, thereby avoiding distracting information, and (ii) a global module that aggregates information by effectively incorporating importance weights. Importantly, we show that both modules can use entailment functions pre-trained on a large scale NLI datasets. We evaluate performance on MultiRC and OpenBookQA, two multihop QA datasets. When using an entailment function pre-trained on NLI datasets, Multee outperforms QA models trained only on the target QA datasets and the OpenAI transformer models. The code is available at https://github.com/StonyBrookNLP/multee.
Abstract:Recent systems for natural language understanding are strong at overcoming linguistic variability for lookup style reasoning. Yet, their accuracy drops dramatically as the number of reasoning steps increases. We present the first formal framework to study such empirical observations, addressing the ambiguity, redundancy, incompleteness, and inaccuracy that the use of language introduces when representing a hidden conceptual space. Our formal model uses two interrelated spaces: a conceptual meaning space that is unambiguous and complete but hidden, and a linguistic symbol space that captures a noisy grounding of the meaning space in the symbols or words of a language. We apply this framework to study the connectivity problem in undirected graphs---a core reasoning problem that forms the basis for more complex multi-hop reasoning. We show that it is indeed possible to construct a high-quality algorithm for detecting connectivity in the (latent) meaning graph, based on an observed noisy symbol graph, as long as the noise is below our quantified noise level and only a few hops are needed. On the other hand, we also prove an impossibility result: if a query requires a large number (specifically, logarithmic in the size of the meaning graph) of hops, no reasoning system operating over the symbol graph is likely to recover any useful property of the meaning graph. This highlights a fundamental barrier for a class of reasoning problems and systems, and suggests the need to limit the distance between the two spaces, rather than investing in multi-hop reasoning with "many" hops.
Abstract:Many natural language questions require recognizing and reasoning with qualitative relationships (e.g., in science, economics, and medicine), but are challenging to answer with corpus-based methods. Qualitative modeling provides tools that support such reasoning, but the semantic parsing task of mapping questions into those models has formidable challenges. We present QuaRel, a dataset of diverse story questions involving qualitative relationships that characterize these challenges, and techniques that begin to address them. The dataset has 2771 questions relating 19 different types of quantities. For example, "Jenny observes that the robot vacuum cleaner moves slower on the living room carpet than on the bedroom carpet. Which carpet has more friction?" We contribute (1) a simple and flexible conceptual framework for representing these kinds of questions; (2) the QuaRel dataset, including logical forms, exemplifying the parsing challenges; and (3) two novel models for this task, built as extensions of type-constrained semantic parsing. The first of these models (called QuaSP+) significantly outperforms off-the-shelf tools on QuaRel. The second (QuaSP+Zero) demonstrates zero-shot capability, i.e., the ability to handle new qualitative relationships without requiring additional training data, something not possible with previous models. This work thus makes inroads into answering complex, qualitative questions that require reasoning, and scaling to new relationships at low cost. The dataset and models are available at http://data.allenai.org/quarel.
Abstract:We focus on the task of multi-hop reading comprehension where a system is required to reason over a chain of multiple facts, distributed across multiple passages, to answer a question. Inspired by graph-based reasoning, we present a path-based reasoning approach for textual reading comprehension. It operates by generating potential paths across multiple passages, extracting implicit relations along this path, and composing them to encode each path. The proposed model achieves a 2.3% gain on the WikiHop Dev set as compared to previous state-of-the-art and, as a side-effect, is also able to explain its reasoning through explicit paths of sentences.
Abstract:We present a new kind of question answering dataset, OpenBookQA, modeled after open book exams for assessing human understanding of a subject. The open book that comes with our questions is a set of 1329 elementary level science facts. Roughly 6000 questions probe an understanding of these facts and their application to novel situations. This requires combining an open book fact (e.g., metals conduct electricity) with broad common knowledge (e.g., a suit of armor is made of metal) obtained from other sources. While existing QA datasets over documents or knowledge bases, being generally self-contained, focus on linguistic understanding, OpenBookQA probes a deeper understanding of both the topic---in the context of common knowledge---and the language it is expressed in. Human performance on OpenBookQA is close to 92%, but many state-of-the-art pre-trained QA methods perform surprisingly poorly, worse than several simple neural baselines we develop. Our oracle experiments designed to circumvent the knowledge retrieval bottleneck demonstrate the value of both the open book and additional facts. We leave it as a challenge to solve the retrieval problem in this multi-hop setting and to close the large gap to human performance.
Abstract:Most textual entailment models focus on lexical gaps between the premise text and the hypothesis, but rarely on knowledge gaps. We focus on filling these knowledge gaps in the Science Entailment task, by leveraging an external structured knowledge base (KB) of science facts. Our new architecture combines standard neural entailment models with a knowledge lookup module. To facilitate this lookup, we propose a fact-level decomposition of the hypothesis, and verifying the resulting sub-facts against both the textual premise and the structured KB. Our model, NSnet, learns to aggregate predictions from these heterogeneous data formats. On the SciTail dataset, NSnet outperforms a simpler combination of the two predictions by 3% and the base entailment model by 5%.
Abstract:We consider the problem of learning textual entailment models with limited supervision (5K-10K training examples), and present two complementary approaches for it. First, we propose knowledge-guided adversarial example generators for incorporating large lexical resources in entailment models via only a handful of rule templates. Second, to make the entailment model - a discriminator - more robust, we propose the first GAN-style approach for training it using a natural language example generator that iteratively adjusts based on the discriminator's performance. We demonstrate effectiveness using two entailment datasets, where the proposed methods increase accuracy by 4.7% on SciTail and by 2.8% on a 1% training sub-sample of SNLI. Notably, even a single hand-written rule, negate, improves the accuracy on the negation examples in SNLI by 6.1%.
Abstract:Given a knowledge base or KB containing (noisy) facts about common nouns or generics, such as "all trees produce oxygen" or "some animals live in forests", we consider the problem of inferring additional such facts at a precision similar to that of the starting KB. Such KBs capture general knowledge about the world, and are crucial for various applications such as question answering. Different from commonly studied named entity KBs such as Freebase, generics KBs involve quantification, have more complex underlying regularities, tend to be more incomplete, and violate the commonly used locally closed world assumption (LCWA). We show that existing KB completion methods struggle with this new task, and present the first approach that is successful. Our results demonstrate that external information, such as relation schemas and entity taxonomies, if used appropriately, can be a surprisingly powerful tool in this setting. First, our simple yet effective knowledge guided tensor factorization approach achieves state-of-the-art results on two generics KBs (80% precise) for science, doubling their size at 74%-86% precision. Second, our novel taxonomy guided, submodular, active learning method for collecting annotations about rare entities (e.g., oriole, a bird) is 6x more effective at inferring further new facts about them than multiple active learning baselines.