Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
A Critical Evaluation of Open-World Machine Learning

Jul 08, 2020
Liwei Song, Vikash Sehwag, Arjun Nitin Bhagoji, Prateek Mittal

* Presented at the ICML 2020 Workshop on Uncertainty and Robustness in Deep Learning 

  Access Paper or Ask Questions

PatchGuard: Provable Defense against Adversarial Patches Using Masks on Small Receptive Fields

Jun 08, 2020
Chong Xiang, Arjun Nitin Bhagoji, Vikash Sehwag, Prateek Mittal


  Access Paper or Ask Questions

Advances and Open Problems in Federated Learning

Dec 10, 2019
Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D'Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao


  Access Paper or Ask Questions

Lower Bounds on Adversarial Robustness from Optimal Transport

Oct 30, 2019
Arjun Nitin Bhagoji, Daniel Cullina, Prateek Mittal

* Accepted for the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019); 18 pages, 5 figures 

  Access Paper or Ask Questions

Better the Devil you Know: An Analysis of Evasion Attacks using Out-of-Distribution Adversarial Examples

May 05, 2019
Vikash Sehwag, Arjun Nitin Bhagoji, Liwei Song, Chawin Sitawarin, Daniel Cullina, Mung Chiang, Prateek Mittal

* 18 pages, 5 figures, 9 tables 

  Access Paper or Ask Questions

Analyzing Federated Learning through an Adversarial Lens

Nov 29, 2018
Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, Seraphin Calo

* 18 pages, 12 figures 

  Access Paper or Ask Questions

PAC-learning in the presence of evasion adversaries

Jun 06, 2018
Daniel Cullina, Arjun Nitin Bhagoji, Prateek Mittal

* 14 pages, 2 figures (minor changes to biblatex output) 

  Access Paper or Ask Questions

DARTS: Deceiving Autonomous Cars with Toxic Signs

May 31, 2018
Chawin Sitawarin, Arjun Nitin Bhagoji, Arsalan Mosenia, Mung Chiang, Prateek Mittal

* Submitted to ACM CCS 2018; Extended version of [1801.02780] Rogue Signs: Deceiving Traffic Sign Recognition with Malicious Ads and Logos 

  Access Paper or Ask Questions

Rogue Signs: Deceiving Traffic Sign Recognition with Malicious Ads and Logos

Mar 26, 2018
Chawin Sitawarin, Arjun Nitin Bhagoji, Arsalan Mosenia, Prateek Mittal, Mung Chiang

* Extended abstract accepted for the 1st Deep Learning and Security Workshop; 5 pages, 4 figures 

  Access Paper or Ask Questions

Exploring the Space of Black-box Attacks on Deep Neural Networks

Dec 27, 2017
Arjun Nitin Bhagoji, Warren He, Bo Li, Dawn Song

* 25 pages, 7 figures, 10 tables 

  Access Paper or Ask Questions

Enhancing Robustness of Machine Learning Systems via Data Transformations

Nov 29, 2017
Arjun Nitin Bhagoji, Daniel Cullina, Chawin Sitawarin, Prateek Mittal

* 15 pages 

  Access Paper or Ask Questions