Alert button
Picture for Andrey Ustyuzhanin

Andrey Ustyuzhanin

Alert button

Generalization of Change-Point Detection in Time Series Data Based on Direct Density Ratio Estimation

Add code
Bookmark button
Alert button
Jan 17, 2020
Mikhail Hushchyn, Andrey Ustyuzhanin

Figure 1 for Generalization of Change-Point Detection in Time Series Data Based on Direct Density Ratio Estimation
Figure 2 for Generalization of Change-Point Detection in Time Series Data Based on Direct Density Ratio Estimation
Figure 3 for Generalization of Change-Point Detection in Time Series Data Based on Direct Density Ratio Estimation
Figure 4 for Generalization of Change-Point Detection in Time Series Data Based on Direct Density Ratio Estimation
Viaarxiv icon

Normalizing flows for deep anomaly detection

Add code
Bookmark button
Alert button
Dec 19, 2019
Artem Ryzhikov, Maxim Borisyak, Andrey Ustyuzhanin, Denis Derkach

Figure 1 for Normalizing flows for deep anomaly detection
Figure 2 for Normalizing flows for deep anomaly detection
Figure 3 for Normalizing flows for deep anomaly detection
Figure 4 for Normalizing flows for deep anomaly detection
Viaarxiv icon

Adaptive Divergence for Rapid Adversarial Optimization

Add code
Bookmark button
Alert button
Dec 01, 2019
Maxim Borisyak, Tatiana Gaintseva, Andrey Ustyuzhanin

Figure 1 for Adaptive Divergence for Rapid Adversarial Optimization
Figure 2 for Adaptive Divergence for Rapid Adversarial Optimization
Figure 3 for Adaptive Divergence for Rapid Adversarial Optimization
Figure 4 for Adaptive Divergence for Rapid Adversarial Optimization
Viaarxiv icon

$(1 + \varepsilon)$-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets

Add code
Bookmark button
Alert button
Jun 14, 2019
Maxim Borisyak, Artem Ryzhikov, Andrey Ustyuzhanin, Denis Derkach, Fedor Ratnikov, Olga Mineeva

Figure 1 for $(1 + \varepsilon)$-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets
Figure 2 for $(1 + \varepsilon)$-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets
Figure 3 for $(1 + \varepsilon)$-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets
Figure 4 for $(1 + \varepsilon)$-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets
Viaarxiv icon

Fast Data-Driven Simulation of Cherenkov Detectors Using Generative Adversarial Networks

Add code
Bookmark button
Alert button
May 28, 2019
Artem Maevskiy, Denis Derkach, Nikita Kazeev, Andrey Ustyuzhanin, Maksim Artemev, Lucio Anderlini

Figure 1 for Fast Data-Driven Simulation of Cherenkov Detectors Using Generative Adversarial Networks
Figure 2 for Fast Data-Driven Simulation of Cherenkov Detectors Using Generative Adversarial Networks
Figure 3 for Fast Data-Driven Simulation of Cherenkov Detectors Using Generative Adversarial Networks
Figure 4 for Fast Data-Driven Simulation of Cherenkov Detectors Using Generative Adversarial Networks
Viaarxiv icon

Cherenkov Detectors Fast Simulation Using Neural Networks

Add code
Bookmark button
Alert button
Mar 28, 2019
Denis Derkach, Nikita Kazeev, Fedor Ratnikov, Andrey Ustyuzhanin, Alexandra Volokhova

Figure 1 for Cherenkov Detectors Fast Simulation Using Neural Networks
Figure 2 for Cherenkov Detectors Fast Simulation Using Neural Networks
Viaarxiv icon

Space Navigator: a Tool for the Optimization of Collision Avoidance Maneuvers

Add code
Bookmark button
Alert button
Feb 06, 2019
Leonid Gremyachikh, Dmitrii Dubov, Nikita Kazeev, Andrey Kulibaba, Andrey Skuratov, Anton Tereshkin, Andrey Ustyuzhanin, Lubov Shiryaeva, Sergej Shishkin

Figure 1 for Space Navigator: a Tool for the Optimization of Collision Avoidance Maneuvers
Figure 2 for Space Navigator: a Tool for the Optimization of Collision Avoidance Maneuvers
Figure 3 for Space Navigator: a Tool for the Optimization of Collision Avoidance Maneuvers
Figure 4 for Space Navigator: a Tool for the Optimization of Collision Avoidance Maneuvers
Viaarxiv icon

Generative Models for Fast Calorimeter Simulation.LHCb case

Add code
Bookmark button
Alert button
Dec 04, 2018
Viktoria Chekalina, Elena Orlova, Fedor Ratnikov, Dmitry Ulyanov, Andrey Ustyuzhanin, Egor Zakharov

Figure 1 for Generative Models for Fast Calorimeter Simulation.LHCb case
Figure 2 for Generative Models for Fast Calorimeter Simulation.LHCb case
Figure 3 for Generative Models for Fast Calorimeter Simulation.LHCb case
Figure 4 for Generative Models for Fast Calorimeter Simulation.LHCb case
Viaarxiv icon

Machine Learning in High Energy Physics Community White Paper

Add code
Bookmark button
Alert button
Jul 08, 2018
Kim Albertsson, Piero Altoe, Dustin Anderson, Michael Andrews, Juan Pedro Araque Espinosa, Adam Aurisano, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi, Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza, Taylor Childers, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Javier Duarte, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert, Nuno Filipe Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir Gligorov, Tobias Golling, Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt Hegner, Lukas Heinrich, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan Kane, Konstantin Kanishchev, Przemysław Karpiński, Zahari Kassabov, Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander Kurepin, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon, Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Narain Meenakshi, Helge Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Mark Neubauer, Harvey Newman, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas, Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie, David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Stewart, Bob Stienen, Ian Stockdale, Giles Strong, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai, Andrey Ustyuzhanin, Martin Vala, Sofia Vallecorsa, Mauro Verzetti, Xavier Vilasís-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael Williams, Wenjing Wu, Stefan Wunsch, Omar Zapata

Figure 1 for Machine Learning in High Energy Physics Community White Paper
Figure 2 for Machine Learning in High Energy Physics Community White Paper
Figure 3 for Machine Learning in High Energy Physics Community White Paper
Viaarxiv icon

Numerical optimization for Artificial Retina Algorithm

Add code
Bookmark button
Alert button
Oct 01, 2017
Maxim Borisyak, Andrey Ustyuzhanin, Denis Derkach, Mikhail Belous

Figure 1 for Numerical optimization for Artificial Retina Algorithm
Figure 2 for Numerical optimization for Artificial Retina Algorithm
Figure 3 for Numerical optimization for Artificial Retina Algorithm
Viaarxiv icon