Alert button
Picture for Alfredo Costilla Reyes

Alfredo Costilla Reyes

Alert button

DiscoverPath: A Knowledge Refinement and Retrieval System for Interdisciplinarity on Biomedical Research

Sep 04, 2023
Yu-Neng Chuang, Guanchu Wang, Chia-Yuan Chang, Kwei-Herng Lai, Daochen Zha, Ruixiang Tang, Fan Yang, Alfredo Costilla Reyes, Kaixiong Zhou, Xiaoqian Jiang, Xia Hu

Figure 1 for DiscoverPath: A Knowledge Refinement and Retrieval System for Interdisciplinarity on Biomedical Research
Figure 2 for DiscoverPath: A Knowledge Refinement and Retrieval System for Interdisciplinarity on Biomedical Research
Figure 3 for DiscoverPath: A Knowledge Refinement and Retrieval System for Interdisciplinarity on Biomedical Research
Figure 4 for DiscoverPath: A Knowledge Refinement and Retrieval System for Interdisciplinarity on Biomedical Research

The exponential growth in scholarly publications necessitates advanced tools for efficient article retrieval, especially in interdisciplinary fields where diverse terminologies are used to describe similar research. Traditional keyword-based search engines often fall short in assisting users who may not be familiar with specific terminologies. To address this, we present a knowledge graph-based paper search engine for biomedical research to enhance the user experience in discovering relevant queries and articles. The system, dubbed DiscoverPath, employs Named Entity Recognition (NER) and part-of-speech (POS) tagging to extract terminologies and relationships from article abstracts to create a KG. To reduce information overload, DiscoverPath presents users with a focused subgraph containing the queried entity and its neighboring nodes and incorporates a query recommendation system, enabling users to iteratively refine their queries. The system is equipped with an accessible Graphical User Interface that provides an intuitive visualization of the KG, query recommendations, and detailed article information, enabling efficient article retrieval, thus fostering interdisciplinary knowledge exploration. DiscoverPath is open-sourced at https://github.com/ynchuang/DiscoverPath.

Viaarxiv icon

BED: A Real-Time Object Detection System for Edge Devices

Feb 14, 2022
Guanchu Wang, Zaid Pervaiz Bhat, Zhimeng Jiang, Yi-Wei Chen, Daochen Zha, Alfredo Costilla Reyes, Afshin Niktash, Gorkem Ulkar, Erman Okman, Xia Hu

Figure 1 for BED: A Real-Time Object Detection System for Edge Devices
Figure 2 for BED: A Real-Time Object Detection System for Edge Devices
Figure 3 for BED: A Real-Time Object Detection System for Edge Devices
Figure 4 for BED: A Real-Time Object Detection System for Edge Devices

Deploying machine learning models to edge devices has many real-world applications, especially for the scenarios that demand low latency, low power, or data privacy. However, it requires substantial research and engineering efforts due to the limited computational resources and memory of edge devices. In this demo, we present BED, an object detection system for edge devices practiced on the MAX78000 DNN accelerator. BED integrates on-device DNN inference with a camera and a screen for image acquisition and output exhibition, respectively. Experiment results indicate BED can provide accurate detection with an only 300KB tiny DNN model.

Viaarxiv icon