Abstract:Whole-body CT is used for multi-trauma patients in the search of any and all injuries. Since an initial assessment needs to be rapid and the search for lesions is done for the whole body, very little time can be allocated for the inspection of a specific anatomy. In particular, intracranial hemorrhages are still missed, especially by clinical students. In this work, we present a Deep Learning approach for highlighting such lesions to improve the diagnostic accuracy. While most works on intracranial hemorrhages perform segmentation, detection only requires bounding boxes for the localization of the bleeding. In this paper, we propose a novel Voxel-Complete IoU (VC-IoU) loss that encourages the network to learn the 3D aspect ratios of bounding boxes and leads to more precise detections. We extensively experiment on brain bleeding detection using a publicly available dataset, and validate it on a private cohort, where we achieve 0.877 AR30, 0.728 AP30, and 0.653 AR30, 0.514 AP30 respectively. These results constitute a relative +5% improvement in Average Recall for both datasets compared to other loss functions. Finally, as there is little data currently publicly available for 3D object detection and as annotation resources are limited in the clinical setting, we evaluate the cost of different annotation methods, as well as the impact of imprecise bounding boxes in the training data on the detection performance.
Abstract:Patients with Intracranial Hemorrhage (ICH) face a potentially life-threatening condition, and patient-centered individualized treatment remains challenging due to possible clinical complications. Deep-Learning-based methods can efficiently analyze the routinely acquired head CTs to support the clinical decision-making. The majority of early work focuses on the detection and segmentation of ICH, but do not model the complex relations between ICH and adjacent brain structures. In this work, we design a tailored object detection method for ICH, which we unite with segmentation-grounded Scene Graph Generation (SGG) methods to learn a holistic representation of the clinical cerebral scene. To the best of our knowledge, this is the first application of SGG for 3D voxel images. We evaluate our method on two head-CT datasets and demonstrate that our model can recall up to 74% of clinically relevant relations. This work lays the foundation towards SGG for 3D voxel data. The generated Scene Graphs can already provide insights for the clinician, but are also valuable for all downstream tasks as a compact and interpretable representation.
Abstract:Continual learning (CL) methods designed for natural image classification often fail to reach basic quality standards for medical image segmentation. Atlas-based segmentation, a well-established approach in medical imaging, incorporates domain knowledge on the region of interest, leading to semantically coherent predictions. This is especially promising for CL, as it allows us to leverage structural information and strike an optimal balance between model rigidity and plasticity over time. When combined with privacy-preserving prototypes, this process offers the advantages of rehearsal-based CL without compromising patient privacy. We propose Atlas Replay, an atlas-based segmentation approach that uses prototypes to generate high-quality segmentation masks through image registration that maintain consistency even as the training distribution changes. We explore how our proposed method performs compared to state-of-the-art CL methods in terms of knowledge transferability across seven publicly available prostate segmentation datasets. Prostate segmentation plays a vital role in diagnosing prostate cancer, however, it poses challenges due to substantial anatomical variations, benign structural differences in older age groups, and fluctuating acquisition parameters. Our results show that Atlas Replay is both robust and generalizes well to yet-unseen domains while being able to maintain knowledge, unlike end-to-end segmentation methods. Our code base is available under https://github.com/MECLabTUDA/Atlas-Replay.
Abstract:Automatic intracranial hemorrhage segmentation in 3D non-contrast head CT (NCCT) scans is significant in clinical practice. Existing hemorrhage segmentation methods usually ignores the anisotropic nature of the NCCT, and are evaluated on different in-house datasets with distinct metrics, making it highly challenging to improve segmentation performance and perform objective comparisons among different methods. The INSTANCE 2022 was a grand challenge held in conjunction with the 2022 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). It is intended to resolve the above-mentioned problems and promote the development of both intracranial hemorrhage segmentation and anisotropic data processing. The INSTANCE released a training set of 100 cases with ground-truth and a validation set with 30 cases without ground-truth labels that were available to the participants. A held-out testing set with 70 cases is utilized for the final evaluation and ranking. The methods from different participants are ranked based on four metrics, including Dice Similarity Coefficient (DSC), Hausdorff Distance (HD), Relative Volume Difference (RVD) and Normalized Surface Dice (NSD). A total of 13 teams submitted distinct solutions to resolve the challenges, making several baseline models, pre-processing strategies and anisotropic data processing techniques available to future researchers. The winner method achieved an average DSC of 0.6925, demonstrating a significant growth over our proposed baseline method. To the best of our knowledge, the proposed INSTANCE challenge releases the first intracranial hemorrhage segmentation benchmark, and is also the first challenge that intended to resolve the anisotropic problem in 3D medical image segmentation, which provides new alternatives in these research fields.