Abstract:A soundscape is defined by the acoustic environment a person perceives at a location. In this work, we propose a framework for mapping soundscapes across the Earth. Since soundscapes involve sound distributions that span varying spatial scales, we represent locations with multi-scale satellite imagery and learn a joint representation among this imagery, audio, and text. To capture the inherent uncertainty in the soundscape of a location, we design the representation space to be probabilistic. We also fuse ubiquitous metadata (including geolocation, time, and data source) to enable learning of spatially and temporally dynamic representations of soundscapes. We demonstrate the utility of our framework by creating large-scale soundscape maps integrating both audio and text with temporal control. To facilitate future research on this task, we also introduce a large-scale dataset, GeoSound, containing over $300k$ geotagged audio samples paired with both low- and high-resolution satellite imagery. We demonstrate that our method outperforms the existing state-of-the-art on both GeoSound and the existing SoundingEarth dataset. Our dataset and code is available at https://github.com/mvrl/PSM.
Abstract:In remote sensing, we are interested in modeling various modalities for some geographic location. Several works have focused on learning the relationship between a location and type of landscape, habitability, audio, textual descriptions, etc. Recently, a common way to approach these problems is to train a deep-learning model that uses satellite images to infer some unique characteristics of the location. In this work, we present a deep-learning model, GeoBind, that can infer about multiple modalities, specifically text, image, and audio, from satellite imagery of a location. To do this, we use satellite images as the binding element and contrastively align all other modalities to the satellite image data. Our training results in a joint embedding space with multiple types of data: satellite image, ground-level image, audio, and text. Furthermore, our approach does not require a single complex dataset that contains all the modalities mentioned above. Rather it only requires multiple satellite-image paired data. While we only align three modalities in this paper, we present a general framework that can be used to create an embedding space with any number of modalities by using satellite images as the binding element. Our results show that, unlike traditional unimodal models, GeoBind is versatile and can reason about multiple modalities for a given satellite image input.
Abstract:We focus on the problem of species distribution modeling using global-scale presence-only data. Most previous studies have mapped the range of a given species using geographical and environmental features alone. To capture a stronger implicit relationship between species, we encode the taxonomic hierarchy of species using a large language model. This enables range mapping for any taxonomic rank and unseen species without additional supervision. Further, we propose a novel proximity-aware evaluation metric that enables evaluating species distribution models using any pixel-level representation of ground-truth species range map. The proposed metric penalizes the predictions of a model based on its proximity to the ground truth. We describe the effectiveness of our model by systematically evaluating on the task of species range prediction, zero-shot prediction and geo-feature regression against the state-of-the-art. Results show our model outperforms the strong baselines when trained with a variety of multi-label learning losses.
Abstract:We propose a novel weakly supervised approach for creating maps using free-form textual descriptions (or captions). We refer to this new line of work of creating textual maps as zero-shot mapping. Prior works have approached mapping tasks by developing models that predict over a fixed set of attributes using overhead imagery. However, these models are very restrictive as they can only solve highly specific tasks for which they were trained. Mapping text, on the other hand, allows us to solve a large variety of mapping problems with minimal restrictions. To achieve this, we train a contrastive learning framework called Sat2Cap on a new large-scale dataset of paired overhead and ground-level images. For a given location, our model predicts the expected CLIP embedding of the ground-level scenery. Sat2Cap is also conditioned on temporal information, enabling it to learn dynamic concepts that vary over time. Our experimental results demonstrate that our models successfully capture fine-grained concepts and effectively adapt to temporal variations. Our approach does not require any text-labeled data making the training easily scalable. The code, dataset, and models will be made publicly available.