Abstract:Quantum machine learning is a promising direction for building more efficient and expressive models, particularly in domains where understanding complex, structured data is critical. We present the Quantum Graph Transformer (QGT), a hybrid graph-based architecture that integrates a quantum self-attention mechanism into the message-passing framework for structured language modeling. The attention mechanism is implemented using parameterized quantum circuits (PQCs), which enable the model to capture rich contextual relationships while significantly reducing the number of trainable parameters compared to classical attention mechanisms. We evaluate QGT on five sentiment classification benchmarks. Experimental results show that QGT consistently achieves higher or comparable accuracy than existing quantum natural language processing (QNLP) models, including both attention-based and non-attention-based approaches. When compared with an equivalent classical graph transformer, QGT yields an average accuracy improvement of 5.42% on real-world datasets and 4.76% on synthetic datasets. Additionally, QGT demonstrates improved sample efficiency, requiring nearly 50% fewer labeled samples to reach comparable performance on the Yelp dataset. These results highlight the potential of graph-based QNLP techniques for advancing efficient and scalable language understanding.
Abstract:Efficient thermal and power management in modern multiprocessor systems-on-chip (MPSoCs) demands accurate power consumption estimation. One of the state-of-the-art approaches, Alternative Blind Power Identification (ABPI), theoretically eliminates the dependence on steady-state temperatures, addressing a major shortcoming of previous approaches. However, ABPI performance has remained unverified in actual hardware implementations. In this study, we conduct the first empirical validation of ABPI on commercial hardware using the NVIDIA Jetson Xavier AGX platform. Our findings reveal that, while ABPI provides computational efficiency and independence from steady-state temperature, it exhibits considerable accuracy deficiencies in real-world scenarios. To overcome these limitations, we introduce a novel approach that integrates Custom Physics-Informed Neural Networks (CPINNs) with the underlying thermal model of ABPI. Our approach employs a specialized loss function that harmonizes physical principles with data-driven learning, complemented by multi-objective genetic algorithm optimization to balance estimation accuracy and computational cost. In experimental validation, CPINN-ABPI achieves a reduction of 84.7\% CPU and 73.9\% GPU in the mean absolute error (MAE) relative to ABPI, with the weighted mean absolute percentage error (WMAPE) improving from 47\%--81\% to $\sim$12\%. The method maintains real-time performance with 195.3~$\mu$s of inference time, with similar 85\%--99\% accuracy gains across heterogeneous SoCs.
Abstract:The growing necessity for enhanced processing capabilities in edge devices with limited resources has led us to develop effective methods for improving high-performance computing (HPC) applications. In this paper, we introduce LASP (Lightweight Autotuning of Scientific Application Parameters), a novel strategy designed to address the parameter search space challenge in edge devices. Our strategy employs a multi-armed bandit (MAB) technique focused on online exploration and exploitation. Notably, LASP takes a dynamic approach, adapting seamlessly to changing environments. We tested LASP with four HPC applications: Lulesh, Kripke, Clomp, and Hypre. Its lightweight nature makes it particularly well-suited for resource-constrained edge devices. By employing the MAB framework to efficiently navigate the search space, we achieved significant performance improvements while adhering to the stringent computational limits of edge devices. Our experimental results demonstrate the effectiveness of LASP in optimizing parameter search on edge devices.
Abstract:Existing Hardware Trojans (HT) detection methods face several critical limitations: logic testing struggles with scalability and coverage for large designs, side-channel analysis requires golden reference chips, and formal verification methods suffer from state-space explosion. The emergence of Large Language Models (LLMs) offers a promising new direction for HT detection by leveraging their natural language understanding and reasoning capabilities. For the first time, this paper explores the potential of general-purpose LLMs in detecting various HTs inserted in Register Transfer Level (RTL) designs, including SRAM, AES, and UART modules. We propose a novel tool for this goal that systematically assesses state-of-the-art LLMs (GPT-4o, Gemini 1.5 pro, and Llama 3.1) in detecting HTs without prior fine-tuning. To address potential training data bias, the tool implements perturbation techniques, i.e., variable name obfuscation, and design restructuring, that make the cases more sophisticated for the used LLMs. Our experimental evaluation demonstrates perfect detection rates by GPT-4o and Gemini 1.5 pro in baseline scenarios (100%/100% precision/recall), with both models achieving better trigger line coverage (TLC: 0.82-0.98) than payload line coverage (PLC: 0.32-0.46). Under code perturbation, while Gemini 1.5 pro maintains perfect detection performance (100%/100%), GPT-4o (100%/85.7%) and Llama 3.1 (66.7%/85.7%) show some degradation in detection rates, and all models experience decreased accuracy in localizing both triggers and payloads. This paper validates the potential of LLM approaches for hardware security applications, highlighting areas for future improvement.
Abstract:This work focuses on advancing security research in the hardware design space by formally defining the realistic problem of Hardware Trojan (HT) detection. The goal is to model HT detection more closely to the real world, i.e., describing the problem as The Seeker's Dilemma where a detecting agent is unaware of whether circuits are infected by HTs or not. Using this theoretical problem formulation, we create a benchmark that consists of a mixture of HT-free and HT-infected restructured circuits while preserving their original functionalities. The restructured circuits are randomly infected by HTs, causing a situation where the defender is uncertain if a circuit is infected or not. We believe that our innovative benchmark and methodology of creating benchmarks will help the community judge the detection quality of different methods by comparing their success rates in circuit classification. We use our developed benchmark to evaluate three state-of-the-art HT detection tools to show baseline results for this approach. We use Principal Component Analysis to assess the strength of our benchmark, where we observe that some restructured HT-infected circuits are mapped closely to HT-free circuits, leading to significant label misclassification by detectors.
Abstract:Distracted driving is a critical safety issue that leads to numerous fatalities and injuries worldwide. This study addresses the urgent need for efficient and real-time machine learning models to detect distracted driving behaviors. Leveraging the Pretrained YOLOv8 (P-YOLOv8) model, a real-time object detection system is introduced, optimized for both speed and accuracy. This approach addresses the computational constraints and latency limitations commonly associated with conventional detection models. The study demonstrates P-YOLOv8 versatility in both object detection and image classification tasks using the Distracted Driver Detection dataset from State Farm, which includes 22,424 images across ten behavior categories. Our research explores the application of P-YOLOv8 for image classification, evaluating its performance compared to deep learning models such as VGG16, VGG19, and ResNet. Some traditional models often struggle with low accuracy, while others achieve high accuracy but come with high computational costs and slow detection speeds, making them unsuitable for real-time applications. P-YOLOv8 addresses these issues by achieving competitive accuracy with significant computational cost and efficiency advantages. In particular, P-YOLOv8 generates a lightweight model with a size of only 2.84 MB and a lower number of parameters, totaling 1,451,098, due to its innovative architecture. It achieves a high accuracy of 99.46 percent with this small model size, opening new directions for deployment on inexpensive and small embedded devices using Tiny Machine Learning (TinyML). The experimental results show robust performance, making P-YOLOv8 a cost-effective solution for real-time deployment. This study provides a detailed analysis of P-YOLOv8's architecture, training, and performance benchmarks, highlighting its potential for real-time use in detecting distracted driving.
Abstract:Modern multicore System-on-Chips (SoCs) feature hardware monitoring mechanisms that measure total power consumption. However, these aggregate measurements are often insufficient for fine-grained thermal and power management. This paper presents an enhanced Clustering Blind Power Identification (ICBPI) approach, designed to improve the sensitivity and robustness of the traditional Blind Power Identification (BPI) method. BPI estimates the power consumption of individual cores and models the thermal behavior of an SoC using only thermal sensor data and total power measurements. The proposed ICBPI approach refines BPI's initialization process, particularly improving the non-negative matrix factorization (NNMF) step, which is critical to the accuracy of BPI. ICBPI introduces density-based spatial clustering of applications with noise (DBSCAN) to better align temperature and power consumption data, thereby providing more accurate power consumption estimates. We validate the ICBPI method through two key tasks. The first task evaluates power estimation accuracy across four different multicore architectures, including a heterogeneous processor. Results show that ICBPI significantly enhances accuracy, reducing error rates by 77.56% compared to the original BPI and by 68.44% compared to the state-of-the-art BPISS method. The second task focuses on improving the detection and localization of malicious thermal sensor attacks in heterogeneous processors. The results demonstrate that ICBPI enhances the security and robustness of multicore SoCs against such attacks.
Abstract:The Hardware Trojan (HT) problem can be thought of as a continuous game between attackers and defenders, each striving to outsmart the other by leveraging any available means for an advantage. Machine Learning (ML) has recently been key in advancing HT research. Various novel techniques, such as Reinforcement Learning (RL) and Graph Neural Networks (GNNs), have shown HT insertion and detection capabilities. HT insertion with ML techniques, specifically, has seen a spike in research activity due to the shortcomings of conventional HT benchmarks and the inherent human design bias that occurs when we create them. This work continues this innovation by presenting a tool called "TrojanForge", capable of generating HT adversarial examples that defeat HT detectors; demonstrating the capabilities of GAN-like adversarial tools for automatic HT insertion. We introduce an RL environment where the RL insertion agent interacts with HT detectors in an insertion-detection loop where the agent collects rewards based on its success in bypassing HT detectors. Our results show that this process leads to inserted HTs that evade various HT detectors, achieving high attack success percentages. This tool provides insight into why HT insertion fails in some instances and how we can leverage this knowledge in defense.
Abstract:Parameterized quantum circuits (PQCs) are fundamental to quantum machine learning (QML), quantum optimization, and variational quantum algorithms (VQAs). The expressibility of PQCs is a measure that determines their capability to harness the full potential of the quantum state space. It is thus a crucial guidepost to know when selecting a particular PQC ansatz. However, the existing technique for expressibility computation through statistical estimation requires a large number of samples, which poses significant challenges due to time and computational resource constraints. This paper introduces a novel approach for expressibility estimation of PQCs using Graph Neural Networks (GNNs). We demonstrate the predictive power of our GNN model with a dataset consisting of 25,000 samples from the noiseless IBM QASM Simulator and 12,000 samples from three distinct noisy quantum backends. The model accurately estimates expressibility, with root mean square errors (RMSE) of 0.05 and 0.06 for the noiseless and noisy backends, respectively. We compare our model's predictions with reference circuits [Sim and others, QuTe'2019] and IBM Qiskit's hardware-efficient ansatz sets to further evaluate our model's performance. Our experimental evaluation in noiseless and noisy scenarios reveals a close alignment with ground truth expressibility values, highlighting the model's efficacy. Moreover, our model exhibits promising extrapolation capabilities, predicting expressibility values with low RMSE for out-of-range qubit circuits trained solely on only up to 5-qubit circuit sets. This work thus provides a reliable means of efficiently evaluating the expressibility of diverse PQCs on noiseless simulators and hardware.
Abstract:This work focuses on advancing security research in the hardware design space by formally defining the realistic problem of Hardware Trojan (HT) detection. The goal is to model HT detection more closely to the real world, i.e., describing the problem as "The Seeker's Dilemma" (an extension of Hide&Seek on a graph), where a detecting agent is unaware of whether circuits are infected by HTs or not. Using this theoretical problem formulation, we create a benchmark that consists of a mixture of HT-free and HT-infected restructured circuits while preserving their original functionalities. The restructured circuits are randomly infected by HTs, causing a situation where the defender is uncertain if a circuit is infected or not. We believe that our innovative dataset will help the community better judge the detection quality of different methods by comparing their success rates in circuit classification. We use our developed benchmark to evaluate three state-of-the-art HT detection tools to show baseline results for this approach. We use Principal Component Analysis to assess the strength of our benchmark, where we observe that some restructured HT-infected circuits are mapped closely to HT-free circuits, leading to significant label misclassification by detectors.