Abstract:Quantum machine learning is a promising direction for building more efficient and expressive models, particularly in domains where understanding complex, structured data is critical. We present the Quantum Graph Transformer (QGT), a hybrid graph-based architecture that integrates a quantum self-attention mechanism into the message-passing framework for structured language modeling. The attention mechanism is implemented using parameterized quantum circuits (PQCs), which enable the model to capture rich contextual relationships while significantly reducing the number of trainable parameters compared to classical attention mechanisms. We evaluate QGT on five sentiment classification benchmarks. Experimental results show that QGT consistently achieves higher or comparable accuracy than existing quantum natural language processing (QNLP) models, including both attention-based and non-attention-based approaches. When compared with an equivalent classical graph transformer, QGT yields an average accuracy improvement of 5.42% on real-world datasets and 4.76% on synthetic datasets. Additionally, QGT demonstrates improved sample efficiency, requiring nearly 50% fewer labeled samples to reach comparable performance on the Yelp dataset. These results highlight the potential of graph-based QNLP techniques for advancing efficient and scalable language understanding.
Abstract:Parameterized quantum circuits (PQCs) are fundamental to quantum machine learning (QML), quantum optimization, and variational quantum algorithms (VQAs). The expressibility of PQCs is a measure that determines their capability to harness the full potential of the quantum state space. It is thus a crucial guidepost to know when selecting a particular PQC ansatz. However, the existing technique for expressibility computation through statistical estimation requires a large number of samples, which poses significant challenges due to time and computational resource constraints. This paper introduces a novel approach for expressibility estimation of PQCs using Graph Neural Networks (GNNs). We demonstrate the predictive power of our GNN model with a dataset consisting of 25,000 samples from the noiseless IBM QASM Simulator and 12,000 samples from three distinct noisy quantum backends. The model accurately estimates expressibility, with root mean square errors (RMSE) of 0.05 and 0.06 for the noiseless and noisy backends, respectively. We compare our model's predictions with reference circuits [Sim and others, QuTe'2019] and IBM Qiskit's hardware-efficient ansatz sets to further evaluate our model's performance. Our experimental evaluation in noiseless and noisy scenarios reveals a close alignment with ground truth expressibility values, highlighting the model's efficacy. Moreover, our model exhibits promising extrapolation capabilities, predicting expressibility values with low RMSE for out-of-range qubit circuits trained solely on only up to 5-qubit circuit sets. This work thus provides a reliable means of efficiently evaluating the expressibility of diverse PQCs on noiseless simulators and hardware.