Abstract:Cell-free massive MIMO (multiple-input multiple-output) enhances spectral and energy efficiency compared to conventional cellular networks by enabling joint transmission and reception across a large number of distributed access points (APs). Since these APs are envisioned to be low-cost and densely deployed, hardware impairments, stemming from non-ideal radio-frequency (RF) chains, are unavoidable. While existing studies primarily address hardware impairments on the access side, the impact of hardware impairments on the wireless fronthaul link has remained largely unexplored. In this work, we fill this important gap by introducing a novel amplify-and-forward (AF) based wireless fronthauling scheme tailored for cell-free massive MIMO. Focusing on the uplink, we develop an analytical framework that jointly models the hardware impairments at both the APs and the fronthaul transceivers, derives the resulting end-to-end distorted signal expression, and quantifies the individual contribution of each impairment to the spectral efficiency. Furthermore, we design distortion-aware linear combiners that optimally mitigate these effects. Numerical results demonstrate significant performance gains from distortion-aware processing and illustrate the potential of the proposed AF fronthauling scheme as a cost-effective enabler for future cell-free architectures.
Abstract:In the uplink of a cell-free massive MIMO system, quantization affects performance in two key domains: the time-domain distortion introduced by finite-resolution analog-to-digital converters (ADCs) at the access points (APs), and the fronthaul quantization of signals sent to the central processing unit (CPU). Although quantizing twice may seem redundant, the ADC quantization in orthogonal frequency-division duplex (OFDM) systems appears in the time domain, and one must then convert to the frequency domain, where quantization can be applied only to the signals at active subcarriers. This reduces fronthaul load and avoids unnecessary distortion, since the ADC output spans all OFDM samples while only a subset of subcarriers carries useful information. While both quantization effects have been extensively studied in narrowband systems, their joint impact in practical wideband OFDM-based cell-free massive MIMO remains largely unexplored. This paper addresses the gap by modeling the joint distortion and proposing a fronthaul strategy in which each AP processes the received signal to reduce quantization artifacts before transmission. We develop an efficient estimation algorithm that reconstructs the unquantized time-domain signal prior to fronthaul transmission and evaluate its effectiveness. The proposed design offers new insights for implementing efficient, quantization-aware uplink transmission in wideband cell-free architectures.
Abstract:Without requiring operational costs such as cabling and powering while maintaining reconfigurable phase-shift capability, self-sustainable reconfigurable intelligent surfaces (ssRISs) can be deployed in locations inaccessible to conventional relays or base stations, offering a novel approach to enhance wireless coverage. This study assesses the feasibility of ssRIS deployment by analyzing two harvest-and-reflect (HaR) schemes: element-splitting (ES) and time-splitting (TS). We examine how element requirements scale with key system parameters, transmit power, data rate demands, and outage constraints under both line-of-sight (LOS) and non-line-of-sight (NLOS) ssRIS-to-user equipment (UE) channels. Analytical and numerical results reveal distinct feasibility characteristics. The TS scheme demonstrates better channel hardening gain, maintaining stable element requirements across varying outage margins, making it advantageous for indoor deployments with favorable harvesting conditions and moderate data rates. However, TS exhibits an element requirement that exponentially scales to harvesting difficulty and data rate. Conversely, the ES scheme shows only linear growth with harvesting difficulty, providing better feasibility under challenging outdoor scenarios. These findings establish that TS excels in benign environments, prioritizing reliability, while ES is preferable for demanding conditions requiring operational robustness.
Abstract:Cell-free massive MIMO (multiple-input multiple-output) is expected to be one of the key technologies in sixth-generation (6G) and beyond wireless communications, offering enhanced spectral efficiency for cell-edge user equipments by employing joint transmission and reception with a large number of antennas distributed throughout the region. However, high-resolution RF chains associated with these antennas significantly increase power consumption. To address this issue, the use of low-resolution analog-to-digital and digital-to-analog converters (ADCs/DACs) has emerged as a promising approach to balance power efficiency and performance in massive MIMO networks. In this work, we propose a novel quantized precoding algorithm tailored for cell-free massive MIMO systems, where the proposed method dynamically deactivates unnecessary antennas based on the structure of each symbol vector, thereby enhancing energy efficiency. Simulation results demonstrate that our algorithm outperforms existing methods such as squared-infinity norm Douglas-Rachford splitting (SQUID) and regularized zero forcing (RZF), achieving superior performance while effectively reducing power consumption.
Abstract:Reconfigurable intelligent surfaces (RISs) can greatly improve the signal quality of future communication systems by reflecting transmitted signals toward the receiver. However, even when the base station (BS) has perfect channel knowledge and can compute the optimal RIS phase-shift configuration, implementing this configuration requires feedback signaling over a control channel from the BS to the RIS. This feedback must be kept minimal, as it is transmitted wirelessly every time the channel changes. In this paper, we examine how the feedback load, measured in bits, affects the performance of an RIS-aided system. Specifically, we investigate the trade-offs between codebook-based and element-wise feedback schemes, and how these influence the signal-to-noise ratio (SNR). We propose a novel quantization codebook tailored for line-of-sight (LoS) that guarantees a minimal SNR loss using a number of feedback bits that scale logarithmically with the number of RIS elements. We demonstrate the codebook's usefulness over Rician fading channels and how to extend it to handle a non-zero static path. Numerical simulations and analytical analysis are performed to quantify the performance degradation that results from a reduced feedback load, shedding light on how efficiently RIS configurations can be fed back in practical systems.
Abstract:This paper investigates the application of reconfigurable intelligent surfaces (RISs) to improve fronthaul link survivability in cell-free massive MIMO (CF mMIMO) systems. To enhance the fronthaul survivability, two complementary mechanisms are considered. Firstly, RIS is set to provide reliable line-of-sight (LOS) connectivity and enhance the mmWave backup link. Secondly, a resource-sharing scheme that leverages redundant cable capacity through neighboring master access points (APs) to guarantee availability is considered. We formulate the redundant capacity minimization problem as a RIS-assisted multi-user MIMO rate control optimization problem, developing a novel solution that combines a modified weighted minimum mean square error (WMMSE) algorithm for precoding design with Riemannian gradient descent for RIS phase shift optimization. Our numerical evaluations show that RIS reduces the required redundant capacity by 65.6% compared to the no RIS case to reach a 99% survivability. The results show that the most substantial gains of RIS occur during complete outages of the direct disconnected master AP-CPU channel. These results demonstrate RIS's potential to significantly enhance fronthaul reliability while minimizing infrastructure costs in next-generation wireless networks.
Abstract:This paper investigates how near-field beamfocusing can be achieved using a modular linear array (MLA), composed of multiple widely spaced uniform linear arrays (ULAs). The MLA architecture extends the aperture length of a standard ULA without adding additional antennas, thereby enabling near-field beamfocusing without increasing processing complexity. Unlike conventional far-field beamforming, near-field beamfocusing enables simultaneous data transmission to multiple users at different distances in the same angular interval, offering significant multiplexing gains. We present a detailed mathematical analysis of the beamwidth and beamdepth achievable with the MLA and show that by appropriately selecting the number of antennas in each constituent ULA, ideal near-field beamfocusing can be realized. In addition, we propose a computationally efficient localization method that fuses estimates from each ULA, enabling efficient parametric channel estimation. Simulation results confirm the accuracy of the analytical expressions and that MLAs achieve near-field beamfocusing with a limited number of antennas, making them a promising solution for next-generation wireless systems.
Abstract:In this letter, we investigate the transmission of a complex-valued parameter vector from a transmitter to an intended receiver, considering both the presence and absence of an eavesdropper. The direct links from the transmitter to both the intended receiver and the eavesdropper are assumed to be blocked, and communications occur solely through cascaded channels facilitated by a beyond-diagonal reconfigurable intelligent surface (BD-RIS). While previous research has considered this system under conventional (diagonal) RIS assistance, we extend the setup to incorporate BD-RIS and quantify the resulting improvement in estimation performance at the intended receiver. This performance is measured by the trace of the Fisher information matrix (FIM), or equivalently, the average Fisher information, while simultaneously limiting the estimation capability of the eavesdropper. We propose solutions and algorithms for optimizing the BD-RIS response matrix and demonstrate their effectiveness. Numerical results reveal that the BD-RIS provides a significant enhancement in estimation quality compared to conventional diagonal RIS architectures.
Abstract:Massive multiple-input multiple-output (mMIMO) has been the core of 5G due to its ability to improve spectral efficiency and spatial multiplexing significantly; however, cell-edge users still experience performance degradation due to inter-cell interference and uneven signal distribution. While cell-free mMIMO (cfmMIMO) addresses this issue by providing uniform coverage through distributed antennas, it requires significantly more deployment cost due to the fronthaul and tight synchronization requirements. Alternatively, repeater-assisted massive MIMO (RA-MIMO) has recently been proposed to extend the coverage of cellular mMIMO by densely deploying low-cost single-antenna repeaters capable of amplifying and forwarding signals. In this work, we investigate amplification control for the repeaters for two different goals: (i) providing a fair performance among users, and (ii) reducing the extra energy consumption by the deployed repeaters. We propose a max-min amplification control algorithm using the convex-concave procedure for fairness and a joint sleep mode and amplification control algorithm for energy efficiency, comparing long- and short-term strategies. Numerical results show that RA-MIMO, with maximum amplification, improves signal-to-interference-plus-noise ratio (SINR) by over 20 dB compared to mMIMO and performs within 1 dB of cfmMIMO when deploying the same number of repeaters as access points in cfmMIMO. Additionally, our majority-rule-based long-term sleep mechanism reduces repeater power consumption by 70% while maintaining less than 1% spectral efficiency outage.

Abstract:We consider a cell-free massive multiple-input multiple-output (mMIMO) network, where unmanned aerial vehicles (UAVs) equipped with multiple antennas serve as distributed UAV-access points (UAV-APs). These UAV-APs provide seamless coverage by jointly serving user equipments (UEs) with out predefined cell boundaries. However, high-capacity wireless networks face significant challenges due to fronthaul limitations in UAV-assisted architectures. This letter proposes a novel UAV-based cell-free mMIMO framework that leverages distributed UAV-APs to serve UEs while addressing the capacity constraints of wireless fronthaul links. We evaluate functional split Options 7.2 and 8 for the fronthaul links, aiming to maximize the minimum signal-to-interference-plus-noise ratio (SINR) among the UEs and minimize the power consumption by optimizing the transmit powers of UAV-APs and selectively activating them. Our analysis compares sub-6 GHz and millimeter wave (mmWave) bands for the fronthaul, showing that mmWave achieves superior SINR with lower power consumption, particularly under Option 8. Additionally, we determine the minimum fronthaul bandwidth required to activate a single UAV-AP under different split options.