What is Sentiment Analysis? Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Papers and Code
Apr 02, 2025
Abstract:Automatic text classification (ATC) has experienced remarkable advancements in the past decade, best exemplified by recent small and large language models (SLMs and LLMs), leveraged by Transformer architectures. Despite recent effectiveness improvements, a comprehensive cost-benefit analysis investigating whether the effectiveness gains of these recent approaches compensate their much higher costs when compared to more traditional text classification approaches such as SVMs and Logistic Regression is still missing in the literature. In this context, this work's main contributions are twofold: (i) we provide a scientifically sound comparative analysis of the cost-benefit of twelve traditional and recent ATC solutions including five open LLMs, and (ii) a large benchmark comprising {22 datasets}, including sentiment analysis and topic classification, with their (train-validation-test) partitions based on folded cross-validation procedures, along with documentation, and code. The release of code, data, and documentation enables the community to replicate experiments and advance the field in a more scientifically sound manner. Our comparative experimental results indicate that LLMs outperform traditional approaches (up to 26%-7.1% on average) and SLMs (up to 4.9%-1.9% on average) in terms of effectiveness. However, LLMs incur significantly higher computational costs due to fine-tuning, being, on average 590x and 8.5x slower than traditional methods and SLMs, respectively. Results suggests the following recommendations: (1) LLMs for applications that require the best possible effectiveness and can afford the costs; (2) traditional methods such as Logistic Regression and SVM for resource-limited applications or those that cannot afford the cost of tuning large LLMs; and (3) SLMs like Roberta for near-optimal effectiveness-efficiency trade-off.
* 7 pages, 2 figures, 3 tables
Via

Apr 01, 2025
Abstract:Negation plays an important role in various natural language processing tasks such as Natural Language Inference and Sentiment Analysis tasks. Numerous prior studies have found that contextual text embedding models such as BERT, ELMO, RoBERTa or XLNet face challenges in accurately understanding negation. Recent advancements in universal text embeddings have demonstrated superior performance over contextual text embeddings in various tasks. However, due to the bias in popular evaluation benchmarks, the negation awareness capacity of these models remains unclear. To bridge the gap in existing literature, an in-depth analysis is initiated in this work to study the negation awareness of cutting-edge universal text embedding models. Our findings reveal a significant lack of negation awareness in these models, often interpreting negated text pairs as semantically similar. To efficiently deal with the conflict that different tasks need different trade-offs between topic and negation information among other semantic information, a data-efficient and computational-efficient embedding re-weighting method is proposed without modifying the parameters of text embedding models. The proposed solution is able to improve text embedding models' negation awareness significantly on both simple negation understanding task and complex negation understanding task. Furthermore, the proposed solution can also significantly improve the negation awareness of Large Language Model based task-specific high dimensional universal text embeddings.
Via

Mar 28, 2025
Abstract:Central bank communication plays a critical role in shaping economic expectations and monetary policy effectiveness. This study applies supervised machine learning techniques to classify the sentiment of press releases from the Bank of Thailand, addressing gaps in research that primarily focus on lexicon-based approaches. My findings show that supervised learning can be an effective method, even with smaller datasets, and serves as a starting point for further automation. However, achieving higher accuracy and better generalization requires a substantial amount of labeled data, which is time-consuming and demands expertise. Using models such as Na\"ive Bayes, Random Forest and SVM, this study demonstrates the applicability of machine learning for central bank sentiment analysis, with English-language communications from the Thai Central Bank as a case study.
Via

Mar 27, 2025
Abstract:This research presents a hybrid emotion recognition system integrating advanced Deep Learning, Natural Language Processing (NLP), and Large Language Models (LLMs) to analyze audio and textual data for enhancing customer interactions in contact centers. By combining acoustic features with textual sentiment analysis, the system achieves nuanced emotion detection, addressing the limitations of traditional approaches in understanding complex emotional states. Leveraging LSTM and CNN models for audio analysis and DistilBERT for textual evaluation, the methodology accommodates linguistic and cultural variations while ensuring real-time processing. Rigorous testing on diverse datasets demonstrates the system's robustness and accuracy, highlighting its potential to transform customer service by enabling personalized, empathetic interactions and improving operational efficiency. This research establishes a foundation for more intelligent and human-centric digital communication, redefining customer service standards.
* 5 pages, 1 figure, 2 tables
Via

Mar 15, 2025
Abstract:This research presents an advanced sentiment analysis framework studied on Iranian restaurant reviews, combining fuzzy logic with conventional sentiment analysis techniques to assess both sentiment polarity and intensity. A dataset of 1266 reviews, alongside corresponding star ratings, was compiled and preprocessed for analysis. Initial sentiment analysis was conducted using the Sentiment Intensity Analyzer (VADER), a rule-based tool that assigns sentiment scores across positive, negative, and neutral categories. However, a noticeable bias toward neutrality often led to an inaccurate representation of sentiment intensity. To mitigate this issue, based on a fuzzy perspective, two refinement techniques were introduced, applying square-root and fourth-root transformations to amplify positive and negative sentiment scores while maintaining neutrality. This led to three distinct methodologies: Approach 1, utilizing unaltered VADER scores; Approach 2, modifying sentiment values using the square root; and Approach 3, applying the fourth root for further refinement. A Fuzzy Inference System incorporating comprehensive fuzzy rules was then developed to process these refined scores and generate a single, continuous sentiment value for each review based on each approach. Comparative analysis, including human supervision and alignment with customer star ratings, revealed that the refined approaches significantly improved sentiment analysis by reducing neutrality bias and better capturing sentiment intensity. Despite these advancements, minor over-amplification and persistent neutrality in domain-specific cases were identified, leading us to propose several future studies to tackle these occasional barriers. The study's methodology and outcomes offer valuable insights for businesses seeking a more precise understanding of consumer sentiment, enhancing sentiment analysis across various industries.
Via

Mar 29, 2025
Abstract:Cryptocurrencies have transformed financial markets with their innovative blockchain technology and volatile price movements, presenting both challenges and opportunities for predictive analytics. Ethereum, being one of the leading cryptocurrencies, has experienced significant market fluctuations, making its price prediction an attractive yet complex problem. This paper presents a comprehensive study on the effectiveness of Large Language Models (LLMs) in predicting Ethereum prices for short-term and few-shot forecasting scenarios. The main challenge in training models for time series analysis is the lack of data. We address this by leveraging a novel approach that adapts existing pre-trained LLMs on natural language or images from billions of tokens to the unique characteristics of Ethereum price time series data. Through thorough experimentation and comparison with traditional and contemporary models, our results demonstrate that selectively freezing certain layers of pre-trained LLMs achieves state-of-the-art performance in this domain. This approach consistently surpasses benchmarks across multiple metrics, including Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE), demonstrating its effectiveness and robustness. Our research not only contributes to the existing body of knowledge on LLMs but also provides practical insights in the cryptocurrency prediction domain. The adaptability of pre-trained LLMs to handle the nature of Ethereum prices suggests a promising direction for future research, potentially including the integration of sentiment analysis to further refine forecasting accuracy.
Via

Mar 15, 2025
Abstract:Interpretability remains a key difficulty in sentiment analysis with Large Language Models (LLMs), particularly in high-stakes applications where it is crucial to comprehend the rationale behind forecasts. This research addressed this by introducing a technique that applies SHAP (Shapley Additive Explanations) by breaking down LLMs into components such as embedding layer,encoder,decoder and attention layer to provide a layer-by-layer knowledge of sentiment prediction. The approach offers a clearer overview of how model interpret and categorise sentiment by breaking down LLMs into these parts. The method is evaluated using the Stanford Sentiment Treebank (SST-2) dataset, which shows how different sentences affect different layers. The effectiveness of layer-wise SHAP analysis in clarifying sentiment-specific token attributions is demonstrated by experimental evaluations, which provide a notable enhancement over current whole-model explainability techniques. These results highlight how the suggested approach could improve the reliability and transparency of LLM-based sentiment analysis in crucial applications.
Via

Mar 11, 2025
Abstract:Multimodal sentiment analysis enhances conventional sentiment analysis, which traditionally relies solely on text, by incorporating information from different modalities such as images, text, and audio. This paper proposes a novel multimodal sentiment analysis architecture that integrates text and image data to provide a more comprehensive understanding of sentiments. For text feature extraction, we utilize BERT, a natural language processing model. For image feature extraction, we employ DINOv2, a vision-transformer-based model. The textual and visual latent features are integrated using proposed fusion techniques, namely the Basic Fusion Model, Self Attention Fusion Model, and Dual Attention Fusion Model. Experiments on three datasets, Memotion 7k dataset, MVSA single dataset, and MVSA multi dataset, demonstrate the viability and practicality of the proposed multimodal architecture.
* 12 pages
Via

Mar 13, 2025
Abstract:Social media platforms are becoming the foundations of social interactions including messaging and opinion expression. In this regard, Sentiment Analysis techniques focus on providing solutions to ensure the retrieval and analysis of generated data including sentiments, emotions, and discussed topics. International competitions such as the International Workshop on Semantic Evaluation (SemEval) have attracted many researchers and practitioners with a special research interest in building sentiment analysis systems. In our work, we study top-ranking systems for each SemEval edition during the 2013-2021 period, a total of 658 teams participated in these editions with increasing interest over years. We analyze the proposed systems marking the evolution of research trends with a focus on the main components of sentiment analysis systems including data acquisition, preprocessing, and classification. Our study shows an active use of preprocessing techniques, an evolution of features engineering and word representation from lexicon-based approaches to word embeddings, and the dominance of neural networks and transformers over the classification phase fostering the use of ready-to-use models. Moreover, we provide researchers with insights based on experimented systems which will allow rapid prototyping of new systems and help practitioners build for future SemEval editions.
* International Journal of Electrical and Computer Engineering
(IJECE), 13(3), 3322-3338 (2023)
Via

Mar 11, 2025
Abstract:This work proposes an LSTM-based sentiment classification model with multi-head attention mechanism and TF-IDF optimization. Through the integration of TF-IDF feature extraction and multi-head attention, the model significantly improves text sentiment analysis performance. Experimental results on public data sets demonstrate that the new method achieves substantial improvements in the most critical metrics like accuracy, recall, and F1-score compared to baseline models. Specifically, the model achieves an accuracy of 80.28% on the test set, which is improved by about 12% in comparison with standard LSTM models. Ablation experiments also support the necessity and necessity of all modules, in which the impact of multi-head attention is greatest to performance improvement. This research provides a proper approach to sentiment analysis, which can be utilized in public opinion monitoring, product recommendation, etc.
Via
