Aspect-category sentiment analysis provides granular insights by identifying specific themes within product reviews that are associated with particular opinions. Supervised learning approaches dominate the field. However, data is scarce and expensive to annotate for new domains. We argue that leveraging large language models in a zero-shot setting is beneficial where the time and resources required for dataset annotation are limited. Furthermore, annotation bias may lead to strong results using supervised methods but transfer poorly to new domains in contexts that lack annotations and demand reproducibility. In our work, we propose novel techniques that combine multiple chain-of-thought agents by leveraging large language models' token-level uncertainty scores. We experiment with the 3B and 70B+ parameter size variants of Llama and Qwen models, demonstrating how these approaches can fulfil practical needs and opening a discussion on how to gauge accuracy in label-scarce conditions.
World models have been widely utilized in robotics, gaming, and auto-driving. However, their applications on natural language tasks are relatively limited. In this paper, we construct the dialogue world model, which could predict the user's emotion, sentiment, and intention, and future utterances. By defining a POMDP, we argue emotion, sentiment and intention can be modeled as the user belief and solved by maximizing the information bottleneck. By this user belief modeling, we apply the model-based reinforcement learning framework to the dialogue system, and propose a framework called DreamCUB. Experiments show that the pretrained dialogue world model can achieve state-of-the-art performances on emotion classification and sentiment identification, while dialogue quality is also enhanced by joint training of the policy, critic and dialogue world model. Further analysis shows that this manner holds a reasonable exploration-exploitation balance and also transfers well to out-of-domain scenarios such as empathetic dialogues.
Understanding how visual content communicates sentiment is critical in an era where online interaction is increasingly dominated by this kind of media on social platforms. However, this remains a challenging problem, as sentiment perception is closely tied to complex, scene-level semantics. In this paper, we propose an original framework, MLLMsent, to investigate the sentiment reasoning capabilities of Multimodal Large Language Models (MLLMs) through three perspectives: (1) using those MLLMs for direct sentiment classification from images; (2) associating them with pre-trained LLMs for sentiment analysis on automatically generated image descriptions; and (3) fine-tuning the LLMs on sentiment-labeled image descriptions. Experiments on a recent and established benchmark demonstrate that our proposal, particularly the fine-tuned approach, achieves state-of-the-art results outperforming Lexicon-, CNN-, and Transformer-based baselines by up to 30.9%, 64.8%, and 42.4%, respectively, across different levels of evaluators' agreement and sentiment polarity categories. Remarkably, in a cross-dataset test, without any training on these new data, our model still outperforms, by up to 8.26%, the best runner-up, which has been trained directly on them. These results highlight the potential of the proposed visual reasoning scheme for advancing affective computing, while also establishing new benchmarks for future research.




Every year, most educational institutions seek and receive an enormous volume of text feedback from students on courses, teaching, and overall experience. Yet, turning this raw feedback into useful insights is far from straightforward. It has been a long-standing challenge to adopt automatic opinion mining solutions for such education review text data due to the content complexity and low-granularity reporting requirements. Aspect-based Sentiment Analysis (ABSA) offers a promising solution with its rich, sub-sentence-level opinion mining capabilities. However, existing ABSA research and resources are very heavily focused on the commercial domain. In education, they are scarce and hard to develop due to limited public datasets and strict data protection. A high-quality, annotated dataset is urgently needed to advance research in this under-resourced area. In this work, we present EduRABSA (Education Review ABSA), the first public, annotated ABSA education review dataset that covers three review subject types (course, teaching staff, university) in the English language and all main ABSA tasks, including the under-explored implicit aspect and implicit opinion extraction. We also share ASQE-DPT (Data Processing Tool), an offline, lightweight, installation-free manual data annotation tool that generates labelled datasets for comprehensive ABSA tasks from a single-task annotation. Together, these resources contribute to the ABSA community and education domain by removing the dataset barrier, supporting research transparency and reproducibility, and enabling the creation and sharing of further resources. The dataset, annotation tool, and scripts and statistics for dataset processing and sampling are available at https://github.com/yhua219/edurabsa_dataset_and_annotation_tool.
Sentiment Analysis is widely used to quantify sentiment in text, but its application to literary texts poses unique challenges due to figurative language, stylistic ambiguity, as well as sentiment evocation strategies. Traditional dictionary-based tools often underperform, especially for low-resource languages, and transformer models, while promising, typically output coarse categorical labels that limit fine-grained analysis. We introduce a novel continuous sentiment scoring method based on concept vector projection, trained on multilingual literary data, which more effectively captures nuanced sentiment expressions across genres, languages, and historical periods. Our approach outperforms existing tools on English and Danish texts, producing sentiment scores whose distribution closely matches human ratings, enabling more accurate analysis and sentiment arc modeling in literature.
Digital health analytics face critical challenges nowadays. The sophisticated analysis of patient-generated health content, which contains complex emotional and medical contexts, requires scarce domain expertise, while traditional ML approaches are constrained by data shortage and privacy limitations in healthcare settings. Online Health Communities (OHCs) exemplify these challenges with mixed-sentiment posts, clinical terminology, and implicit emotional expressions that demand specialised knowledge for accurate Sentiment Analysis (SA). To address these challenges, this study explores how Large Language Models (LLMs) can integrate expert knowledge through in-context learning for SA, providing a scalable solution for sophisticated health data analysis. Specifically, we develop a structured codebook that systematically encodes expert interpretation guidelines, enabling LLMs to apply domain-specific knowledge through targeted prompting rather than extensive training. Six GPT models validated alongside DeepSeek and LLaMA 3.1 are compared with pre-trained language models (BioBERT variants) and lexicon-based methods, using 400 expert-annotated posts from two OHCs. LLMs achieve superior performance while demonstrating expert-level agreement. This high agreement, with no statistically significant difference from inter-expert agreement levels, suggests knowledge integration beyond surface-level pattern recognition. The consistent performance across diverse LLM models, supported by in-context learning, offers a promising solution for digital health analytics. This approach addresses the critical challenge of expert knowledge shortage in digital health research, enabling real-time, expert-quality analysis for patient monitoring, intervention assessment, and evidence-based health strategies.
Multimodal Machine Learning (MML) aims to integrate and analyze information from diverse modalities, such as text, audio, and visuals, enabling machines to address complex tasks like sentiment analysis, emotion recognition, and multimedia retrieval. Recently, Arabic MML has reached a certain level of maturity in its foundational development, making it time to conduct a comprehensive survey. This paper explores Arabic MML by categorizing efforts through a novel taxonomy and analyzing existing research. Our taxonomy organizes these efforts into four key topics: datasets, applications, approaches, and challenges. By providing a structured overview, this survey offers insights into the current state of Arabic MML, highlighting areas that have not been investigated and critical research gaps. Researchers will be empowered to build upon the identified opportunities and address challenges to advance the field.
Aspect-based sentiment analysis (ABSA) has made significant strides, yet challenges remain for low-resource languages due to the predominant focus on English. Current cross-lingual ABSA studies often centre on simpler tasks and rely heavily on external translation tools. In this paper, we present a novel sequence-to-sequence method for compound ABSA tasks that eliminates the need for such tools. Our approach, which uses constrained decoding, improves cross-lingual ABSA performance by up to 10\%. This method broadens the scope of cross-lingual ABSA, enabling it to handle more complex tasks and providing a practical, efficient alternative to translation-dependent techniques. Furthermore, we compare our approach with large language models (LLMs) and show that while fine-tuned multilingual LLMs can achieve comparable results, English-centric LLMs struggle with these tasks.
While aspect-based sentiment analysis (ABSA) has made substantial progress, challenges remain for low-resource languages, which are often overlooked in favour of English. Current cross-lingual ABSA approaches focus on limited, less complex tasks and often rely on external translation tools. This paper introduces a novel approach using constrained decoding with sequence-to-sequence models, eliminating the need for unreliable translation tools and improving cross-lingual performance by 5\% on average for the most complex task. The proposed method also supports multi-tasking, which enables solving multiple ABSA tasks with a single model, with constrained decoding boosting results by more than 10\%. We evaluate our approach across seven languages and six ABSA tasks, surpassing state-of-the-art methods and setting new benchmarks for previously unexplored tasks. Additionally, we assess large language models (LLMs) in zero-shot, few-shot, and fine-tuning scenarios. While LLMs perform poorly in zero-shot and few-shot settings, fine-tuning achieves competitive results compared to smaller multilingual models, albeit at the cost of longer training and inference times. We provide practical recommendations for real-world applications, enhancing the understanding of cross-lingual ABSA methodologies. This study offers valuable insights into the strengths and limitations of cross-lingual ABSA approaches, advancing the state-of-the-art in this challenging research domain.
This project explores emoji prediction from short text sequences using four deep learning architectures: a feed-forward network, CNN, transformer, and BERT. Using the TweetEval dataset, we address class imbalance through focal loss and regularization techniques. Results show BERT achieves the highest overall performance due to its pre-training advantage, while CNN demonstrates superior efficacy on rare emoji classes. This research shows the importance of architecture selection and hyperparameter tuning for sentiment-aware emoji prediction, contributing to improved human-computer interaction.