Aggregate analytics over conversational data are increasingly used for safety monitoring, governance, and product analysis in large language model systems. A common practice is to embed conversations, cluster them, and publish short textual summaries describing each cluster. While raw conversations may never be exposed, these derived summaries can still pose privacy risks if they contain personally identifying information (PII) or uniquely traceable strings copied from individual conversations. We introduce CanaryBench, a simple and reproducible stress test for privacy leakage in cluster-level conversation summaries. CanaryBench generates synthetic conversations with planted secret strings ("canaries") that simulate sensitive identifiers. Because canaries are known a priori, any appearance of these strings in published summaries constitutes a measurable leak. Using TF-IDF embeddings and k-means clustering on 3,000 synthetic conversations (24 topics) with a canary injection rate of 0.60, we evaluate an intentionally extractive example snippet summarizer that models quote-like reporting. In this configuration, we observe canary leakage in 50 of 52 canary-containing clusters (cluster-level leakage rate 0.961538), along with nonzero regex-based PII indicator counts. A minimal defense combining a minimum cluster-size publication threshold (k-min = 25) and regex-based redaction eliminates measured canary leakage and PII indicator hits in the reported run while maintaining a similar cluster-coherence proxy. We position this work as a societal impacts contribution centered on privacy risk measurement for published analytics artifacts rather than raw user data.
The rise of conspiracy theories has created far-reaching societal harm in the public discourse by eroding trust and fueling polarization. Beyond this public impact lies a deeply personal toll on the friends and families of conspiracy believers, a dimension often overlooked in large-scale computational research. This study fills this gap by systematically mapping radicalization journeys and quantifying the associated emotional toll inflicted on loved ones. We use the prominent case of QAnon as a case study, analyzing 12747 narratives from the r/QAnonCasualties support community through a novel mixed-methods approach. First, we use topic modeling (BERTopic) to map the radicalization trajectories, identifying key pre-existing conditions, triggers, and post-radicalization characteristics. From this, we apply an LDA-based graphical model to uncover six recurring archetypes of QAnon adherents, which we term "radicalization personas." Finally, using LLM-assisted emotion detection and regression modeling, we link these personas to the specific emotional toll reported by narrators. Our findings reveal that these personas are not just descriptive; they are powerful predictors of the specific emotional harms experienced by narrators. Radicalization perceived as a deliberate ideological choice is associated with narrator anger and disgust, while those marked by personal and cognitive collapse are linked to fear and sadness. This work provides the first empirical framework for understanding radicalization as a relational phenomenon, offering a vital roadmap for researchers and practitioners to navigate its interpersonal fallout.
Code-switching is a widespread practice among the world's multilingual majority, yet few benchmarks accurately reflect its complexity in everyday communication. We present PingPong, a benchmark for natural multi-party code-switching dialogues covering five language-combination variations, some of which are trilingual. Our dataset consists of human-authored conversations among 2 to 4 participants covering authentic, multi-threaded structures where replies frequently reference much earlier points in the dialogue. We demonstrate that our data is significantly more natural and structurally diverse than machine-generated alternatives, offering greater variation in message length, speaker dominance, and reply distance. Based on these dialogues, we define three downstream tasks: Question Answering, Dialogue Summarization, and Topic Classification. Evaluations of several state-of-the-art language models on PingPong reveal that performance remains limited on code-switched inputs, underscoring the urgent need for more robust NLP systems capable of addressing the intricacies of real-world multilingual discourse.
Developing students as well-rounded professionals is increasingly important for our modern society. Although there is a great consensus that technical and professional ("soft") skills should be developed and intertwined in the core of computer science subjects, there are still few examples of alike teaching methodologies at technical schools. This contribution investigates the integration of technical and professional skills while teaching specialized curricula in computer science. We propose a broadly applicable, step-by-step methodology that connects core technical concepts (e.g., information entropy, network security) with fine arts practices such as music, video production, gaming, and performing arts (e.g., Oxford-style debates). The methodology was applied in several computer science courses at technical universities, where quantitative and qualitative assessments, including student questionnaires and exam scores, showed improved learning outcomes and increased student engagement compared to traditional methods. The results indicate that this art-based integration can effectively bridge the historical divide between the two schools of thought, offering a practical direction for educators. Within this context, we also identify open issues that will guide future research on topics such as instructor engagement, female motivation in technical subjects, and scalability of these approaches.
Question answering systems are typically evaluated on factual correctness, yet many real-world applications-such as education and career guidance-require mentorship: responses that provide reflection and guidance. Existing QA benchmarks rarely capture this distinction, particularly in multilingual and long-form settings. We introduce MentorQA, the first multilingual dataset and evaluation framework for mentorship-focused question answering from long-form videos, comprising nearly 9,000 QA pairs from 180 hours of content across four languages. We define mentorship-focused evaluation dimensions that go beyond factual accuracy, capturing clarity, alignment, and learning value. Using MentorQA, we compare Single-Agent, Dual-Agent, RAG, and Multi-Agent QA architectures under controlled conditions. Multi-Agent pipelines consistently produce higher-quality mentorship responses, with especially strong gains for complex topics and lower-resource languages. We further analyze the reliability of automated LLM-based evaluation, observing substantial variation in alignment with human judgments. Overall, this work establishes mentorship-focused QA as a distinct research problem and provides a multilingual benchmark for studying agentic architectures and evaluation design in educational AI. The dataset and evaluation framework are released at https://github.com/AIM-SCU/MentorQA.
Personalized learning systems have emerged as a promising approach to enhance student outcomes by tailoring educational content, pacing, and feedback to individual needs. However, most existing systems remain fragmented, specializing in either knowledge tracing, diagnostic modeling, or resource recommendation, but rarely integrating these components into a cohesive adaptive cycle. In this paper, we propose ALIGNAgent (Adaptive Learner Intelligence for Gap Identification and Next-step guidance), a multi-agent educational framework designed to deliver personalized learning through integrated knowledge estimation, skill-gap identification, and targeted resource recommendation.ALIGNAgent begins by processing student quiz performance, gradebook data, and learner preferences to generate topic-level proficiency estimates using a Skill Gap Agent that employs concept-level diagnostic reasoning to identify specific misconceptions and knowledge deficiencies. After identifying skill gaps, the Recommender Agent retrieves preference-aware learning materials aligned with diagnosed deficiencies, implementing a continuous feedback loop where interventions occur before advancing to subsequent topics. Extensive empirical evaluation on authentic datasets from two undergraduate computer science courses demonstrates ALIGNAgent's effectiveness, with GPT-4o-based agents achieving precision of 0.87-0.90 and F1 scores of 0.84-0.87 in knowledge proficiency estimation validated against actual exam performance.
This paper presents the DMV-AVP System, a distributed simulation of Multi-Vehicle Autonomous Valet Parking (AVP). The system was implemented as an application of the Distributed Multi-Vehicle Architecture (DMAVA) for synchronized multi-host execution. Most existing simulation approaches rely on centralized or non-distributed designs that constrain scalability and limit fully autonomous control. This work introduces two modules built on top of the DMAVA: 1) a Multi-Vehicle AVP Node that performs state-based coordination, queuing, and reservation management across multiple vehicles, and 2) a Unity-Integrated YOLOv5 Parking Spot Detection Module that provides real-time, vision-based perception within AWSIM Labs. Both modules integrate seamlessly with the DMAVA and extend it specifically for multi-vehicle AVP operation, supported by a Zenoh-based communication layer that ensures low-latency topic synchronization and coordinated behavior across hosts. Experiments conducted on two- and three-host configurations demonstrate deterministic coordination, conflict-free parking behavior, and scalable performance across distributed Autoware instances. The results confirm that the proposed Distributed Multi-Vehicle AVP System supports cooperative AVP simulation and establishes a foundation for future real-world and hardware-in-the-loop validation. Demo videos and source code are available at https://github.com/zubxxr/multi-vehicle-avp
We introduce DNIPRO, a novel longitudinal corpus of 246K news articles documenting the Russo-Ukrainian war from Feb 2022 to Aug 2024, spanning eleven media outlets across five nation states (Russia, Ukraine, U.S., U.K., and China) and three languages (English, Russian, and Mandarin Chinese). This multilingual resource features consistent and comprehensive metadata, and multiple types of annotation with rigorous human evaluations for downstream tasks relevant to systematic transnational analyses of contentious wartime discourse. DNIPRO's distinctive value lies in its inclusion of competing geopolitical perspectives, making it uniquely suited for studying narrative divergence, media framing, and information warfare. To demonstrate its utility, we include use case experiments using stance detection, sentiment analysis, topical framing, and contradiction analysis of major conflict events within the larger war. Our explorations reveal how outlets construct competing realities, with coverage exhibiting polarized interpretations that reflect geopolitical interests. Beyond supporting computational journalism research, DNIPRO provides a foundational resource for understanding how conflicting narratives emerge and evolve across global information ecosystems.
Online encyclopedias are central to contemporary information infrastructures and have become focal points of debates over ideological bias. Wikipedia, in particular, has long been accused of left-leaning bias, while Grokipedia, an AI-generated encyclopedia launched by xAI, has been framed as a right-leaning alternative. This paper presents a comparative analysis of Wikipedia and Grokipedia on well-established politically contested topics. Specifically, we examine differences in semantic framing, political orientation, and content prioritization. We find that semantic similarity between the two platforms decays across article sections and diverges more strongly on controversial topics than on randomly sampled ones. Additionally, we show that both encyclopedias predominantly exhibit left-leaning framings, although Grokipedia exhibits a more bimodal distribution with increased prominence of right-leaning content. The experimental code is publicly available.
The rapid expansion of research across machine learning, vision, and language has produced a volume of publications that is increasingly difficult to synthesize. Traditional bibliometric tools rely mainly on metadata and offer limited visibility into the semantic content of papers, making it hard to track how research themes evolve over time or how different areas influence one another. To obtain a clearer picture of recent developments, we compile a unified corpus of more than 100,000 papers from 22 major conferences between 2020 and 2025 and construct a multidimensional profiling pipeline to organize and analyze their textual content. By combining topic clustering, LLM-assisted parsing, and structured retrieval, we derive a comprehensive representation of research activity that supports the study of topic lifecycles, methodological transitions, dataset and model usage patterns, and institutional research directions. Our analysis highlights several notable shifts, including the growth of safety, multimodal reasoning, and agent-oriented studies, as well as the gradual stabilization of areas such as neural machine translation and graph-based methods. These findings provide an evidence-based view of how AI research is evolving and offer a resource for understanding broader trends and identifying emerging directions. Code and dataset: https://github.com/xzc-zju/Profiling_Scientific_Literature