Developing expertise in diagnostic reasoning requires practice with diverse student artifacts, yet privacy regulations prohibit sharing authentic student work for teacher professional development (PD) at scale. We present DrawSim-PD, the first generative framework that simulates NGSS-aligned, student-like science drawings exhibiting controllable pedagogical imperfections to support teacher training. Central to our approach are apability profiles--structured cognitive states encoding what students at each performance level can and cannot yet demonstrate. These profiles ensure cross-modal coherence across generated outputs: (i) a student-like drawing, (ii) a first-person reasoning narrative, and (iii) a teacher-facing diagnostic concept map. Using 100 curated NGSS topics spanning K-12, we construct a corpus of 10,000 systematically structured artifacts. Through an expert-based feasibility evaluation, K--12 science educators verified the artifacts' alignment with NGSS expectations (>84% positive on core items) and utility for interpreting student thinking, while identifying refinement opportunities for grade-band extremes. We release this open infrastructure to overcome data scarcity barriers in visual assessment research.
The rapid development of Large Language Models (LLMs) has significantly enhanced the general capabilities of machine translation. However, as application scenarios become more complex, the limitations of LLMs in vertical domain translations are gradually becoming apparent. In this study, we focus on how to construct translation LLMs that meet the needs of domain customization. We take visual media subtitle translation as our topic and explore how to train expressive and vivid translation LLMs. We investigated the situations of subtitle translation and other domains of literal and liberal translation, verifying the reliability of LLM as reward model and evaluator for translation. Additionally, to train an expressive translation LLM, we constructed and released a multidirectional subtitle parallel corpus dataset and proposed the Adaptive Local Preference Optimization (ALPO) method to address fine-grained preference alignment. Experimental results demonstrate that ALPO achieves outstanding performance in multidimensional evaluation of translation quality.
Sentence-level human value detection is typically framed as multi-label classification over Schwartz values, but it remains unclear whether Schwartz higher-order (HO) categories provide usable structure. We study this under a strict compute-frugal budget (single 8 GB GPU) on ValueEval'24 / ValuesML (74K English sentences). We compare (i) direct supervised transformers, (ii) HO$\rightarrow$values pipelines that enforce the hierarchy with hard masks, and (iii) Presence$\rightarrow$HO$\rightarrow$values cascades, alongside low-cost add-ons (lexica, short context, topics), label-wise threshold tuning, small instruction-tuned LLM baselines ($\le$10B), QLoRA, and simple ensembles. HO categories are learnable from single sentences (e.g., the easiest bipolar pair reaches Macro-$F_1\approx0.58$), but hard hierarchical gating is not a reliable win: it often reduces end-task Macro-$F_1$ via error compounding and recall suppression. In contrast, label-wise threshold tuning is a high-leverage knob (up to $+0.05$ Macro-$F_1$), and small transformer ensembles provide the most consistent additional gains (up to $+0.02$ Macro-$F_1$). Small LLMs lag behind supervised encoders as stand-alone systems, yet can contribute complementary errors in cross-family ensembles. Overall, HO structure is useful descriptively, but enforcing it with hard gates hurts sentence-level value detection; robust improvements come from calibration and lightweight ensembling.
This paper investigates the changing nature of French drama between 1700-1900 using Latent Dirichlet Allocation and Jensen-Shannon Divergence. Results indicate that the topical distribution of French drama changed profoundly after the French Revolution, particularly between 1789 and 1850. Bourgeois themes emerged among the most prevalent topics since the late 18th century. To assess the coevolution of drama and economic growth, I plot the yearly prevalence of topics alongside French GDP between 1700-1900, and discuss these changes in light of the political and economic changes prompted by the French Revolution and the industrialization of the country.
Deepfake detection is a widely researched topic that is crucial for combating the spread of malicious content, with existing methods mainly modeling the problem as classification or spatial localization. The rapid advancements in generative models impose new demands on Deepfake detection. In this paper, we propose multimodal alignment and reinforcement for explainable Deepfake detection via vision-language models, termed MARE, which aims to enhance the accuracy and reliability of Vision-Language Models (VLMs) in Deepfake detection and reasoning. Specifically, MARE designs comprehensive reward functions, incorporating reinforcement learning from human feedback (RLHF), to incentivize the generation of text-spatially aligned reasoning content that adheres to human preferences. Besides, MARE introduces a forgery disentanglement module to capture intrinsic forgery traces from high-level facial semantics, thereby improving its authenticity detection capability. We conduct thorough evaluations on the reasoning content generated by MARE. Both quantitative and qualitative experimental results demonstrate that MARE achieves state-of-the-art performance in terms of accuracy and reliability.
Advancing beyond single monolithic language models (LMs), recent research increasingly recognizes the importance of model collaboration, where multiple LMs collaborate, compose, and complement each other. Existing research on this topic has mostly been disparate and disconnected, from different research communities, and lacks rigorous comparison. To consolidate existing research and establish model collaboration as a school of thought, we present MoCo: a one-stop Python library of executing, benchmarking, and comparing model collaboration algorithms at scale. MoCo features 26 model collaboration methods, spanning diverse levels of cross-model information exchange such as routing, text, logit, and model parameters. MoCo integrates 25 evaluation datasets spanning reasoning, QA, code, safety, and more, while users could flexibly bring their own data. Extensive experiments with MoCo demonstrate that most collaboration strategies outperform models without collaboration in 61.0% of (model, data) settings on average, with the most effective methods outperforming by up to 25.8%. We further analyze the scaling of model collaboration strategies, the training/inference efficiency of diverse methods, highlight that the collaborative system solves problems where single LMs struggle, and discuss future work in model collaboration, all made possible by MoCo. We envision MoCo as a valuable toolkit to facilitate and turbocharge the quest for an open, modular, decentralized, and collaborative AI future.
Despite strong performance on existing benchmarks, it remains unclear whether large language models can reason over genuinely novel scientific information. Most evaluations score end-to-end RAG pipelines, where reasoning is confounded with retrieval and toolchain choices, and the signal is further contaminated by parametric memorization and open-web volatility. We introduce DeR2, a controlled deep-research sandbox that isolates document-grounded reasoning while preserving core difficulties of deep search: multi-step synthesis, denoising, and evidence-based conclusion making. DeR2 decouples evidence access from reasoning via four regimes--Instruction-only, Concepts (gold concepts without documents), Related-only (only relevant documents), and Full-set (relevant documents plus topically related distractors)--yielding interpretable regime gaps that operationalize retrieval loss vs. reasoning loss and enable fine-grained error attribution. To prevent parametric leakage, we apply a two-phase validation that requires parametric failure without evidence while ensuring oracle-concept solvability. To ensure reproducibility, each instance provides a frozen document library (drawn from 2023-2025 theoretical papers) with expert-annotated concepts and validated rationales. Experiments across a diverse set of state-of-the-art foundation models reveal substantial variation and significant headroom: some models exhibit mode-switch fragility, performing worse with the Full-set than with Instruction-only, while others show structural concept misuse, correctly naming concepts but failing to execute them as procedures.
Benchmark Design in Black-Box Optimization (BBO) is a fundamental yet open-ended topic. Early BBO benchmarks are predominantly human-crafted, introducing expert bias and constraining diversity. Automating this design process can relieve the human-in-the-loop burden while enhancing diversity and objectivity. We propose Evolution of Benchmark (EoB), an automated BBO benchmark designer empowered by the large language model (LLM) and its program evolution capability. Specifically, we formulate benchmark design as a bi-objective optimization problem towards maximizing (i) landscape diversity and (ii) algorithm-differentiation ability across a portfolio of BBO solvers. Under this paradigm, EoB iteratively prompts LLM to evolve a population of benchmark programs and employs a reflection-based scheme to co-evolve the landscape and its corresponding program. Comprehensive experiments validate our EoB is a competitive candidate in multi-dimensional usages: 1) Benchmarking BBO algorithms; 2) Training and testing learning-assisted BBO algorithms; 3) Extending proxy for expensive real-world problems.
The rapid integration of Large Language Models (LLMs) into educational assessment rests on the unverified assumption that instruction following capability translates directly to objective adjudication. We demonstrate that this assumption is fundamentally flawed. Instead of evaluating code quality, models frequently decouple from the submission's logic to satisfy hidden directives, a systemic vulnerability we term the Compliance Paradox, where models fine-tuned for extreme helpfulness are vulnerable to adversarial manipulation. To expose this, we introduce the Semantic-Preserving Adversarial Code Injection (SPACI) Framework and the Abstract Syntax Tree-Aware Semantic Injection Protocol (AST-ASIP). These methods exploit the Syntax-Semantics Gap by embedding adversarial directives into syntactically inert regions (trivia nodes) of the Abstract Syntax Tree. Through a large-scale evaluation of 9 SOTA models across 25,000 submissions in Python, C, C++, and Java, we reveal catastrophic failure rates (>95%) in high-capacity open-weights models like DeepSeek-V3, which systematically prioritize hidden formatting constraints over code correctness. We quantify this failure using our novel tripartite framework measuring Decoupling Probability, Score Divergence, and Pedagogical Severity to demonstrate the widespread "False Certification" of functionally broken code. Our findings suggest that current alignment paradigms create a "Trojan" vulnerability in automated grading, necessitating a shift from standard RLHF toward domain-specific Adjudicative Robustness, where models are conditioned to prioritize evidence over instruction compliance. We release our complete dataset and injection framework to facilitate further research on the topic.
Text clustering is today the most popular paradigm for topic modelling, both in academia and industry. Despite clustering topic models' apparent success, we identify a number of issues in Top2Vec and BERTopic, which remain largely unsolved. Firstly, these approaches are unreliable at discovering natural clusters in corpora, due to extreme sensitivity to sample size and hyperparameters, the default values of which result in suboptimal behaviour. Secondly, when estimating term importance, BERTopic ignores the semantic distance of keywords to topic vectors, while Top2Vec ignores word counts in the corpus. This results in, on the one hand, less coherent topics due to the presence of stop words and junk words, and lack of variety and trust on the other. In this paper, I introduce a new approach, \textbf{Topeax}, which discovers the number of clusters from peaks in density estimates, and combines lexical and semantic indices of term importance to gain high-quality topic keywords. Topeax is demonstrated to be better at both cluster recovery and cluster description than Top2Vec and BERTopic, while also exhibiting less erratic behaviour in response to changing sample size and hyperparameters.