



Natural Language Processing (NLP) has transformed the financial industry, enabling advancements in areas such as textual analysis, risk management, and forecasting. Large language models (LLMs) like BloombergGPT and FinMA have set new benchmarks across various financial NLP tasks, including sentiment analysis, stock movement prediction, and credit risk assessment. Furthermore, FinMA-ES, a bilingual financial LLM, has also demonstrated strong performance using the FLARE and FLARE-ES benchmarks. However, the high computational demands of these models limit the accessibility of many organizations. To address this, we propose Layer-wise Adaptive Ensemble Tuning (LAET), a novel strategy that selectively fine-tunes the most effective layers of pre-trained LLMs by analyzing hidden state representations while freezing less critical layers. LAET significantly reduces computational overhead while enhancing task-specific performance. Our approach shows strong results in financial NLP tasks, outperforming existing benchmarks and state-of-the-art LLMs such as GPT-4, even with smaller LLMs ($\sim$3B parameters). This work bridges cutting-edge financial NLP research and real-world deployment with efficient and scalable models for financial applications.
Multimodal Sentiment Analysis (MSA) aims to predict sentiment from language, acoustic, and visual data in videos. However, imbalanced unimodal performance often leads to suboptimal fused representations. Existing approaches typically adopt fixed primary modality strategies to maximize dominant modality advantages, yet fail to adapt to dynamic variations in modality importance across different samples. Moreover, non-language modalities suffer from sequential redundancy and noise, degrading model performance when they serve as primary inputs. To address these issues, this paper proposes a modality optimization and dynamic primary modality selection framework (MODS). First, a Graph-based Dynamic Sequence Compressor (GDC) is constructed, which employs capsule networks and graph convolution to reduce sequential redundancy in acoustic/visual modalities. Then, we develop a sample-adaptive Primary Modality Selector (MSelector) for dynamic dominance determination. Finally, a Primary-modality-Centric Cross-Attention (PCCA) module is designed to enhance dominant modalities while facilitating cross-modal interaction. Extensive experiments on four benchmark datasets demonstrate that MODS outperforms state-of-the-art methods, achieving superior performance by effectively balancing modality contributions and eliminating redundant noise.




Large Language Models (LLMs) demonstrate impressive capabilities, yet their outputs often suffer from misalignment with human preferences due to the inadequacy of weak supervision and a lack of fine-grained control. Training-time alignment methods like Reinforcement Learning from Human Feedback (RLHF) face prohibitive costs in expert supervision and inherent scalability limitations, offering limited dynamic control during inference. Consequently, there is an urgent need for scalable and adaptable alignment mechanisms. To address this, we propose W2S-AlignTree, a pioneering plug-and-play inference-time alignment framework that synergistically combines Monte Carlo Tree Search (MCTS) with the Weak-to-Strong Generalization paradigm for the first time. W2S-AlignTree formulates LLM alignment as an optimal heuristic search problem within a generative search tree. By leveraging weak model's real-time, step-level signals as alignment proxies and introducing an Entropy-Aware exploration mechanism, W2S-AlignTree enables fine-grained guidance during strong model's generation without modifying its parameters. The approach dynamically balances exploration and exploitation in high-dimensional generation search trees. Experiments across controlled sentiment generation, summarization, and instruction-following show that W2S-AlignTree consistently outperforms strong baselines. Notably, W2S-AlignTree raises the performance of Llama3-8B from 1.89 to 2.19, a relative improvement of 15.9 on the summarization task.
Audio classification plays an essential role in sentiment analysis and emotion recognition, especially for analyzing customer attitudes in marketing phone calls. Efficiently categorizing customer purchasing propensity from large volumes of audio data remains challenging. In this work, we propose a novel Multi-Segment Multi-Task Fusion Network (MSMT-FN) that is uniquely designed for addressing this business demand. Evaluations conducted on our proprietary MarketCalls dataset, as well as established benchmarks (CMU-MOSI, CMU-MOSEI, and MELD), show MSMT-FN consistently outperforms or matches state-of-the-art methods. Additionally, our newly curated MarketCalls dataset will be available upon request, and the code base is made accessible at GitHub Repository MSMT-FN, to facilitate further research and advancements in audio classification domain.
WordNet offers rich supersense hierarchies for nouns and verbs, yet adverbs remain underdeveloped, lacking a systematic semantic classification. We introduce a linguistically grounded supersense typology for adverbs, empirically validated through annotation, that captures major semantic domains including manner, temporal, frequency, degree, domain, speaker-oriented, and subject-oriented functions. Results from a pilot annotation study demonstrate that these categories provide broad coverage of adverbs in natural text and can be reliably assigned by human annotators. Incorporating this typology extends WordNet's coverage, aligns it more closely with linguistic theory, and facilitates downstream NLP applications such as word sense disambiguation, event extraction, sentiment analysis, and discourse modeling. We present the proposed supersense categories, annotation outcomes, and directions for future work.
Fine-grained sentiment analysis faces ongoing challenges in Aspect Sentiment Triple Extraction (ASTE), particularly in accurately capturing the relationships between aspects, opinions, and sentiment polarities. While researchers have made progress using BERT and Graph Neural Networks, the full potential of advanced language models in understanding complex language patterns remains unexplored. We introduce DESS, a new approach that builds upon previous work by integrating DeBERTa's enhanced attention mechanism to better understand context and relationships in text. Our framework maintains a dual-channel structure, where DeBERTa works alongside an LSTM channel to process both meaning and grammatical patterns in text. We have carefully refined how these components work together, paying special attention to how different types of language information interact. When we tested DESS on standard datasets, it showed meaningful improvements over current methods, with F1-score increases of 4.85, 8.36, and 2.42 in identifying aspect opinion pairs and determining sentiment accurately. Looking deeper into the results, we found that DeBERTa's sophisticated attention system helps DESS handle complicated sentence structures better, especially when important words are far apart. Our findings suggest that upgrading to more advanced language models when thoughtfully integrated, can lead to real improvements in how well we can analyze sentiments in text. The implementation of our approach is publicly available at: https://github.com/VishalRepos/DESS.
The rapid proliferation of AI-generated content (AIGC) has reshaped the dynamics of digital marketing and online consumer behavior. However, predicting the diffusion trajectory and market impact of such content remains challenging due to data heterogeneity, non linear propagation mechanisms, and evolving consumer interactions. This study proposes an AI driven Decision Support System (DSS) that integrates multi source data including social media streams, marketing expenditure records, consumer engagement logs, and sentiment dynamics using a hybrid Graph Neural Network (GNN) and Temporal Transformer framework. The model jointly learns the content diffusion structure and temporal influence evolution through a dual channel architecture, while causal inference modules disentangle the effects of marketing stimuli on return on investment (ROI) and market visibility. Experiments on large scale real-world datasets collected from multiple online platforms such as Twitter, TikTok, and YouTube advertising show that our system outperforms existing baselines in all six metrics. The proposed DSS enhances marketing decisions by providing interpretable real-time insights into AIGC driven content dissemination and market growth patterns.
Although sparse autoencoders (SAEs) are crucial for identifying interpretable features in neural networks, it is still challenging to distinguish between real computational patterns and erroneous correlations. We introduce Model-X knockoffs to SAE feature selection, using knock-off+ to control the false discovery rate (FDR) with finite-sample guarantees under the standard Model-X assumptions (in our case, via a Gaussian surrogate for the latent distribution). We select 129 features at a target FDR q=0.1 after analyzing 512 high-activity SAE latents for sentiment classification using Pythia-70M. About 25% of the latents under examination carry task-relevant signal, whereas 75% do not, according to the chosen set, which displays a 5.40x separation in knockoff statistics compared to non-selected features. Our method offers a re-producible and principled framework for reliable feature discovery by combining SAEs with multiple-testing-aware inference, advancing the foundations of mechanistic interpretability.




Robustness verification is a promising technique for rigorously proving Recurrent Neural Networks (RNNs) robustly. A key challenge is to over-approximate the nonlinear activation functions with linear constraints, which can transform the verification problem into an efficiently solvable linear programming problem. Existing methods over-approximate the nonlinear parts with linear bounding planes individually, which may cause significant over-estimation and lead to lower verification accuracy. In this paper, in order to tightly enclose the three-dimensional nonlinear surface generated by the Hadamard product, we propose a novel truncated rectangular prism formed by two linear relaxation planes and a refinement-driven method to minimize both its volume and surface area for tighter over-approximation. Based on this approximation, we implement a prototype DeepPrism for RNN robustness verification. The experimental results demonstrate that \emph{DeepPrism} has significant improvement compared with the state-of-the-art approaches in various tasks of image classification, speech recognition and sentiment analysis.




Sentiments about the reproducibility of cited papers in downstream literature offer community perspectives and have shown as a promising signal of the actual reproducibility of published findings. To train effective models to effectively predict reproducibility-oriented sentiments and further systematically study their correlation with reproducibility, we introduce the CC30k dataset, comprising a total of 30,734 citation contexts in machine learning papers. Each citation context is labeled with one of three reproducibility-oriented sentiment labels: Positive, Negative, or Neutral, reflecting the cited paper's perceived reproducibility or replicability. Of these, 25,829 are labeled through crowdsourcing, supplemented with negatives generated through a controlled pipeline to counter the scarcity of negative labels. Unlike traditional sentiment analysis datasets, CC30k focuses on reproducibility-oriented sentiments, addressing a research gap in resources for computational reproducibility studies. The dataset was created through a pipeline that includes robust data cleansing, careful crowd selection, and thorough validation. The resulting dataset achieves a labeling accuracy of 94%. We then demonstrated that the performance of three large language models significantly improves on the reproducibility-oriented sentiment classification after fine-tuning using our dataset. The dataset lays the foundation for large-scale assessments of the reproducibility of machine learning papers. The CC30k dataset and the Jupyter notebooks used to produce and analyze the dataset are publicly available at https://github.com/lamps-lab/CC30k .