Abstract:Research in AI4Science has shown promise in many science applications, including polymer design. However, current LLMs prove ineffective on this problem space because: (i) most models lack polymer-specific knowledge (ii) existing aligned models lack coverage of knowledge and capabilities relevant to polymer design. Addressing this, we introduce PolyBench, a large scale training and test benchmark dataset of more than 125K polymer design related tasks, leveraging a knowledge base of 13M+ data points obtained from experimental and synthetic sources to ensure broad coverage of polymers and their properties. For effective alignment using PolyBench, we introduce a knowledge-augmented reasoning distillation method that augments this dataset with structured CoT. Furthermore, tasks in PolyBench are organized from simple to complex analytical reasoning problems, enabling generalization tests and diagnostic probes across the problem space. Experiments show that small language models (SLMs), of 7B to 14B parameters, trained on PolyBench data outperform similar sized models, and even closed source frontier LLMs on PolyBench test dataset while demonstrating gains on other polymer benchmarks as well.
Abstract:We introduce DNIPRO, a novel longitudinal corpus of 246K news articles documenting the Russo-Ukrainian war from Feb 2022 to Aug 2024, spanning eleven media outlets across five nation states (Russia, Ukraine, U.S., U.K., and China) and three languages (English, Russian, and Mandarin Chinese). This multilingual resource features consistent and comprehensive metadata, and multiple types of annotation with rigorous human evaluations for downstream tasks relevant to systematic transnational analyses of contentious wartime discourse. DNIPRO's distinctive value lies in its inclusion of competing geopolitical perspectives, making it uniquely suited for studying narrative divergence, media framing, and information warfare. To demonstrate its utility, we include use case experiments using stance detection, sentiment analysis, topical framing, and contradiction analysis of major conflict events within the larger war. Our explorations reveal how outlets construct competing realities, with coverage exhibiting polarized interpretations that reflect geopolitical interests. Beyond supporting computational journalism research, DNIPRO provides a foundational resource for understanding how conflicting narratives emerge and evolve across global information ecosystems.