Skin cancer classification is the process of identifying and categorizing different types of skin cancer using deep learning techniques.
Early detection of malignant skin lesions is critical for improving patient outcomes in aggressive, metastatic skin cancers. This study evaluates a comprehensive system for preliminary skin lesion assessment that combines the clinically established ABCD rule of dermoscopy (analyzing Asymmetry, Borders, Color, and Dermoscopic Structures) with machine learning classification. Using a 1,000-image subset of the HAM10000 dataset, the system implements an automated, rule-based pipeline to compute a Total Dermoscopy Score (TDS) for each lesion. This handcrafted approach is compared against various machine learning solutions, including traditional classifiers (Logistic Regression, Random Forest, and SVM) and deep learning models. While the rule-based system provides high clinical interpretability, results indicate a performance bottleneck when reducing complex morphology to five numerical features. Experimental findings show that transfer learning with EfficientNet-B0 failed significantly due to domain shift between natural and medical images. In contrast, a custom three-layer Convolutional Neural Network (CNN) trained from scratch achieved 78.5% accuracy and 86.5% recall on median-filtered images, representing a 19-point accuracy improvement over traditional methods. The results demonstrate that direct pixel-level learning captures diagnostic patterns beyond handcrafted features and that purpose-built lightweight architectures can outperform large pretrained models for small, domain-specific medical datasets.
Melanoma is the most lethal subtype of skin cancer, and early and accurate detection of this disease can greatly improve patients' outcomes. Although machine learning models, especially convolutional neural networks (CNNs), have shown great potential in automating melanoma classification, their diagnostic reliability still suffers due to inconsistent focus on lesion areas. In this study, we analyze the relationship between lesion attention and diagnostic performance, involving masked images, bounding box detection, and transfer learning. We used multiple explainability and sensitivity analysis approaches to investigate how well models aligned their attention with lesion areas and how this alignment correlated with precision, recall, and F1-score. Results showed that models with a higher focus on lesion areas achieved better diagnostic performance, suggesting the potential of interpretable AI in medical diagnostics. This study provides a foundation for developing more accurate and trustworthy melanoma classification models in the future.
Skin cancer is also one of the most common and dangerous types of cancer in the world that requires timely and precise diagnosis. In this paper, a deep-learning architecture of the multi-class skin lesion classification on the HAM10000 dataset will be described. The system suggested combines high-quality data balancing methods, large-scale data augmentation, hybridized EfficientNetV2-L framework with channel attention, and a three-stage progressive learning approach. Moreover, we also use explainable AI (XAI) techniques such as Grad-CAM and saliency maps to come up with intelligible visual representations of model predictions. Our strategy is with a total accuracy of 91.15 per cent, macro F1 of 85.45\% and micro-average AUC of 99.33\%. The model has shown high performance in all the seven lesion classes with specific high performance of melanoma and melanocytic nevi. In addition to enhancing diagnostic transparency, XAI also helps to find out the visual characteristics that cause the classifications, which enhances clinical trustworthiness.
Skin cancer can be identified by dermoscopic examination and ocular inspection, but early detection significantly increases survival chances. Artificial intelligence (AI), using annotated skin images and Convolutional Neural Networks (CNNs), improves diagnostic accuracy. This paper presents an early skin cancer classification method using a soft voting ensemble of CNNs. In this investigation, three benchmark datasets, namely HAM10000, ISIC 2016, and ISIC 2019, were used. The process involved rebalancing, image augmentation, and filtering techniques, followed by a hybrid dual encoder for segmentation via transfer learning. Accurate segmentation focused classification models on clinically significant features, reducing background artifacts and improving accuracy. Classification was performed through an ensemble of MobileNetV2, VGG19, and InceptionV3, balancing accuracy and speed for real-world deployment. The method achieved lesion recognition accuracies of 96.32\%, 90.86\%, and 93.92\% for the three datasets. The system performance was evaluated using established skin lesion detection metrics, yielding impressive results.
Skin cancer classification is a crucial task in medical image analysis, where precise differentiation between malignant and non-malignant lesions is essential for early diagnosis and treatment. In this study, we explore Sequential and Parallel Hybrid CNN-Transformer models with Convolutional Kolmogorov-Arnold Network (CKAN). Our approach integrates transfer learning and extensive data augmentation, where CNNs extract local spatial features, Transformers model global dependencies, and CKAN facilitates nonlinear feature fusion for improved representation learning. To assess generalization, we evaluate our models on multiple benchmark datasets (HAM10000,BCN20000 and PAD-UFES) under varying data distributions and class imbalances. Experimental results demonstrate that hybrid CNN-Transformer architectures effectively capture both spatial and contextual features, leading to improved classification performance. Additionally, the integration of CKAN enhances feature fusion through learnable activation functions, yielding more discriminative representations. Our proposed approach achieves competitive performance in skin cancer classification, demonstrating 92.81% accuracy and 92.47% F1-score on the HAM10000 dataset, 97.83% accuracy and 97.83% F1-score on the PAD-UFES dataset, and 91.17% accuracy with 91.79% F1- score on the BCN20000 dataset highlighting the effectiveness and generalizability of our model across diverse datasets. This study highlights the significance of feature representation and model design in advancing robust and accurate medical image classification.
Skin cancer is one of the most prevalent and preventable types of cancer, yet its early detection remains a challenge, particularly in resource-limited settings where access to specialized healthcare is scarce. This study proposes an AI-driven diagnostic tool optimized for embedded systems to address this gap. Using transfer learning with the MobileNetV2 architecture, the model was adapted for binary classification of skin lesions into "Skin Cancer" and "Other." The TensorRT framework was employed to compress and optimize the model for deployment on the NVIDIA Jetson Orin Nano, balancing performance with energy efficiency. Comprehensive evaluations were conducted across multiple benchmarks, including model size, inference speed, throughput, and power consumption. The optimized models maintained their performance, achieving an F1-Score of 87.18% with a precision of 93.18% and recall of 81.91%. Post-compression results showed reductions in model size of up to 0.41, along with improvements in inference speed and throughput, and a decrease in energy consumption of up to 0.93 in INT8 precision. These findings validate the feasibility of deploying high-performing, energy-efficient diagnostic tools on resource-constrained edge devices. Beyond skin cancer detection, the methodologies applied in this research have broader applications in other medical diagnostics and domains requiring accessible, efficient AI solutions. This study underscores the potential of optimized AI systems to revolutionize healthcare diagnostics, thereby bridging the divide between advanced technology and underserved regions.




Accurate and reliable skin cancer diagnosis is critical for early treatment and improved patient outcomes. Deep learning (DL) models have shown promise in automating skin cancer classification, but their performance can be limited by data scarcity and a lack of uncertainty awareness. In this study, we present a comprehensive evaluation of DL-based skin lesion classification using transfer learning and uncertainty quantification (UQ) on the HAM10000 dataset. In the first phase, we benchmarked several pre-trained feature extractors-including Contrastive Language-Image Pretraining (CLIP) variants, Residual Network-50 (ResNet50), Densely Connected Convolutional Network (DenseNet121), Visual Geometry Group network (VGG16), and EfficientNet-V2-Large-combined with a range of traditional classifiers such as Support Vector Machine (SVM), eXtreme Gradient Boosting (XGBoost), and logistic regression. Our results show that CLIP-based vision transformers, particularly LAION CLIP ViT-H/14 with SVM, deliver the highest classification performance. In the second phase, we incorporated UQ using Monte Carlo Dropout (MCD), Ensemble, and Ensemble Monte Carlo Dropout (EMCD) to assess not only prediction accuracy but also the reliability of model outputs. We evaluated these models using uncertainty-aware metrics such as uncertainty accuracy(UAcc), uncertainty sensitivity(USen), uncertainty specificity(USpe), and uncertainty precision(UPre). The results demonstrate that ensemble methods offer a good trade-off between accuracy and uncertainty handling, while EMCD is more sensitive to uncertain predictions. This study highlights the importance of integrating UQ into DL-based medical diagnosis to enhance both performance and trustworthiness in real-world clinical applications.
The rapid advancement of deep learning in medical image analysis has greatly enhanced the accuracy of skin cancer classification. However, current state-of-the-art models, especially those based on transfer learning like ResNet50, come with significant computational overhead, rendering them impractical for deployment in resource-constrained environments. This study proposes a custom CNN model that achieves a 96.7\% reduction in parameters (from 23.9 million in ResNet50 to 692,000) while maintaining a classification accuracy deviation of less than 0.022\%. Our empirical analysis of the HAM10000 dataset reveals that although transfer learning models provide a marginal accuracy improvement of approximately 0.022\%, they result in a staggering 13,216.76\% increase in FLOPs, considerably raising computational costs and inference latency. In contrast, our lightweight CNN architecture, which encompasses only 30.04 million FLOPs compared to ResNet50's 4.00 billion, significantly reduces energy consumption, memory footprint, and inference time. These findings underscore the trade-off between the complexity of deep models and their real-world feasibility, positioning our optimized CNN as a practical solution for mobile and edge-based skin cancer diagnostics.




Pigmented skin lesions represent localized areas of increased melanin and can indicate serious conditions like melanoma, a major contributor to skin cancer mortality. The MedMNIST v2 dataset, inspired by MNIST, was recently introduced to advance research in biomedical imaging and includes DermaMNIST, a dataset for classifying pigmented lesions based on the HAM10000 dataset. This study assesses ResNet-50 and EfficientNetV2L models for multi-class classification using DermaMNIST, employing transfer learning and various layer configurations. One configuration achieves results that match or surpass existing methods. This study suggests that convolutional neural networks (CNNs) can drive progress in biomedical image analysis, significantly enhancing diagnostic accuracy.
Melanoma, one of the deadliest types of skin cancer, accounts for thousands of fatalities globally. The bluish, blue-whitish, or blue-white veil (BWV) is a critical feature for diagnosing melanoma, yet research into detecting BWV in dermatological images is limited. This study utilizes a non-annotated skin lesion dataset, which is converted into an annotated dataset using a proposed imaging algorithm based on color threshold techniques on lesion patches and color palettes. A Deep Convolutional Neural Network (DCNN) is designed and trained separately on three individual and combined dermoscopic datasets, using custom layers instead of standard activation function layers. The model is developed to categorize skin lesions based on the presence of BWV. The proposed DCNN demonstrates superior performance compared to conventional BWV detection models across different datasets. The model achieves a testing accuracy of 85.71% on the augmented PH2 dataset, 95.00% on the augmented ISIC archive dataset, 95.05% on the combined augmented (PH2+ISIC archive) dataset, and 90.00% on the Derm7pt dataset. An explainable artificial intelligence (XAI) algorithm is subsequently applied to interpret the DCNN's decision-making process regarding BWV detection. The proposed approach, coupled with XAI, significantly improves the detection of BWV in skin lesions, outperforming existing models and providing a robust tool for early melanoma diagnosis.