Paraphrase identification is the task of determining whether two sentences have the same meaning or convey similar information.
Universal Dependencies (UD), while widely regarded as the most successful linguistic framework for cross-lingual syntactic representation, remains underexplored in terms of its effectiveness. This paper addresses this gap by integrating UD into pretrained language models and assesses if UD can improve their performance on a cross-lingual adversarial paraphrase identification task. Experimental results show that incorporation of UD yields significant improvements in accuracy and $F_1$ scores, with average gains of 3.85\% and 6.08\% respectively. These enhancements reduce the performance gap between pretrained models and large language models in some language pairs, and even outperform the latter in some others. Furthermore, the UD-based similarity score between a given language and English is positively correlated to the performance of models in that language. Both findings highlight the validity and potential of UD in out-of-domain tasks.
Large language models (LLMs) are increasingly used in everyday tools and applications, raising concerns about their potential influence on political views. While prior research has shown that LLMs often exhibit measurable political biases--frequently skewing toward liberal or progressive positions--key gaps remain. Most existing studies evaluate only a narrow set of models and languages, leaving open questions about the generalizability of political biases across architectures, scales, and multilingual settings. Moreover, few works examine whether these biases can be actively controlled. In this work, we address these gaps through a large-scale study of political orientation in modern open-source instruction-tuned LLMs. We evaluate seven models, including LLaMA-3.1, Qwen-3, and Aya-Expanse, across 14 languages using the Political Compass Test with 11 semantically equivalent paraphrases per statement to ensure robust measurement. Our results reveal that larger models consistently shift toward libertarian-left positions, with significant variations across languages and model families. To test the manipulability of political stances, we utilize a simple center-of-mass activation intervention technique and show that it reliably steers model responses toward alternative ideological positions across multiple languages. Our code is publicly available at https://github.com/d-gurgurov/Political-Ideologies-LLMs.
Recent progress in large language models (LLMs) for code generation has raised serious concerns about intellectual property protection. Malicious users can exploit LLMs to produce paraphrased versions of proprietary code that closely resemble the original. While the potential for LLM-assisted code paraphrasing continues to grow, research on detecting it remains limited, underscoring an urgent need for detection system. We respond to this need by proposing two tasks. The first task is to detect whether code generated by an LLM is a paraphrased version of original human-written code. The second task is to identify which LLM is used to paraphrase the original code. For these tasks, we construct a dataset LPcode consisting of pairs of human-written code and LLM-paraphrased code using various LLMs. We statistically confirm significant differences in the coding styles of human-written and LLM-paraphrased code, particularly in terms of naming consistency, code structure, and readability. Based on these findings, we develop LPcodedec, a detection method that identifies paraphrase relationships between human-written and LLM-generated code, and discover which LLM is used for the paraphrasing. LPcodedec outperforms the best baselines in two tasks, improving F1 scores by 2.64% and 15.17% while achieving speedups of 1,343x and 213x, respectively.




Recent advancements in natural language processing have highlighted the vulnerability of deep learning models to adversarial attacks. While various defence mechanisms have been proposed, there is a lack of comprehensive benchmarks that evaluate these defences across diverse datasets, models, and tasks. In this work, we address this gap by presenting an extensive benchmark for textual adversarial defence that significantly expands upon previous work. Our benchmark incorporates a wide range of datasets, evaluates state-of-the-art defence mechanisms, and extends the assessment to include critical tasks such as single-sentence classification, similarity and paraphrase identification, natural language inference, and commonsense reasoning. This work not only serves as a valuable resource for researchers and practitioners in the field of adversarial robustness but also identifies key areas for future research in textual adversarial defence. By establishing a new standard for benchmarking in this domain, we aim to accelerate progress towards more robust and reliable natural language processing systems.
This work focuses on the efficiency of the knowledge distillation approach in generating a lightweight yet powerful BERT based model for natural language processing applications. After the model creation, we applied the resulting model, LastBERT, to a real-world task classifying severity levels of Attention Deficit Hyperactivity Disorder (ADHD)-related concerns from social media text data. Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million, resulting in a model approximately 73.64% smaller. On the GLUE benchmark, comprising paraphrase identification, sentiment analysis, and text classification, the student model maintained strong performance across many tasks despite this reduction. The model was also used on a real-world ADHD dataset with an accuracy and F1 score of 85%. When compared to DistilBERT (66M) and ClinicalBERT (110M), LastBERT demonstrated comparable performance, with DistilBERT slightly outperforming it at 87%, and ClinicalBERT achieving 86% across the same metrics. These findings highlight the LastBERT model's capacity to classify degrees of ADHD severity properly, so it offers a useful tool for mental health professionals to assess and comprehend material produced by users on social networking platforms. The study emphasizes the possibilities of knowledge distillation to produce effective models fit for use in resource-limited conditions, hence advancing NLP and mental health diagnosis. Furthermore underlined by the considerable decrease in model size without appreciable performance loss is the lower computational resources needed for training and deployment, hence facilitating greater applicability. Especially using readily available computational tools like Google Colab. This study shows the accessibility and usefulness of advanced NLP methods in pragmatic world applications.




Large Deep Learning models are compressed and deployed for specific applications. However, current Deep Learning model compression methods do not utilize the information about the target application. As a result, the compressed models are application agnostic. Our goal is to customize the model compression process to create a compressed model that will perform better for the target application. Our method, Application Specific Compression (ASC), identifies and prunes components of the large Deep Learning model that are redundant specifically for the given target application. The intuition of our work is to prune the parts of the network that do not contribute significantly to updating the data representation for the given application. We have experimented with the BERT family of models for three applications: Extractive QA, Natural Language Inference, and Paraphrase Identification. We observe that customized compressed models created using ASC method perform better than existing model compression methods and off-the-shelf compressed models.
The paraphrase identification task involves measuring semantic similarity between two short sentences. It is a tricky task, and multilingual paraphrase identification is even more challenging. In this work, we train a bi-encoder model in a contrastive manner to detect hard paraphrases across multiple languages. This approach allows us to use model-produced embeddings for various tasks, such as semantic search. We evaluate our model on downstream tasks and also assess embedding space quality. Our performance is comparable to state-of-the-art cross-encoders, with only a minimal relative drop of 7-10% on the chosen dataset, while keeping decent quality of embeddings.




The increasing use of Large Language Models (LLMs) for generating highly coherent and contextually relevant text introduces new risks, including misuse for unethical purposes such as disinformation or academic dishonesty. To address these challenges, we propose FreqMark, a novel watermarking technique that embeds detectable frequency-based watermarks in LLM-generated text during the token sampling process. The method leverages periodic signals to guide token selection, creating a watermark that can be detected with Short-Time Fourier Transform (STFT) analysis. This approach enables accurate identification of LLM-generated content, even in mixed-text scenarios with both human-authored and LLM-generated segments. Our experiments demonstrate the robustness and precision of FreqMark, showing strong detection capabilities against various attack scenarios such as paraphrasing and token substitution. Results show that FreqMark achieves an AUC improvement of up to 0.98, significantly outperforming existing detection methods.
Large language models can produce highly fluent paraphrases while retaining much of the original meaning. While this capability has a variety of helpful applications, it may also be abused by bad actors, for example to plagiarize content or to conceal their identity. This motivates us to consider the problem of paraphrase inversion: given a paraphrased document, attempt to recover the original text. To explore the feasibility of this task, we fine-tune paraphrase inversion models, both with and without additional author-specific context to help guide the inversion process. We explore two approaches to author-specific inversion: one using in-context examples of the target author's writing, and another using learned style representations that capture distinctive features of the author's style. We show that, when starting from paraphrased machine-generated text, we can recover significant portions of the document using a learned inversion model. When starting from human-written text, the variety of source writing styles poses a greater challenge for invertability. However, even when the original tokens can't be recovered, we find the inverted text is stylistically similar to the original, which significantly improves the performance of plagiarism detectors and authorship identification systems that rely on stylistic markers.
The rise of Modular Deep Learning showcases its potential in various Natural Language Processing applications. Parameter-efficient fine-tuning (PEFT) modularity has been shown to work for various use cases, from domain adaptation to multilingual setups. However, all this work covers the case where the modular components are trained and deployed within one single Pre-trained Language Model (PLM). This model-specific setup is a substantial limitation on the very modularity that modular architectures are trying to achieve. We ask whether current modular approaches are transferable between models and whether we can transfer the modules from more robust and larger PLMs to smaller ones. In this work, we aim to fill this gap via a lens of Knowledge Distillation, commonly used for model compression, and present an extremely straightforward approach to transferring pre-trained, task-specific PEFT modules between same-family PLMs. Moreover, we propose a method that allows the transfer of modules between incompatible PLMs without any change in the inference complexity. The experiments on Named Entity Recognition, Natural Language Inference, and Paraphrase Identification tasks over multiple languages and PEFT methods showcase the initial potential of transferable modularity.