This paper proposes an Improved Noisy Deep Q-Network (Noisy DQN) to enhance the exploration and stability of Unmanned Aerial Vehicle (UAV) when applying deep reinforcement learning in simulated environments. This method enhances the exploration ability by combining the residual NoisyLinear layer with an adaptive noise scheduling mechanism, while improving training stability through smooth loss and soft target network updates. Experiments show that the proposed model achieves faster convergence and up to $+40$ higher rewards compared to standard DQN and quickly reach to the minimum number of steps required for the task 28 in the 15 * 15 grid navigation environment set up. The results show that our comprehensive improvements to the network structure of NoisyNet, exploration control, and training stability contribute to enhancing the efficiency and reliability of deep Q-learning.
Continual reinforcement learning (CRL) requires agents to learn from a sequence of tasks without forgetting previously acquired policies. In this work, we introduce a novel benchmark suite for CRL based on realistically simulated robots in the Gazebo simulator. Our Continual Robotic Simulation Suite (CRoSS) benchmarks rely on two robotic platforms: a two-wheeled differential-drive robot with lidar, camera and bumper sensor, and a robotic arm with seven joints. The former represent an agent in line-following and object-pushing scenarios, where variation of visual and structural parameters yields a large number of distinct tasks, whereas the latter is used in two goal-reaching scenarios with high-level cartesian hand position control (modeled after the Continual World benchmark), and low-level control based on joint angles. For the robotic arm benchmarks, we provide additional kinematics-only variants that bypass the need for physical simulation (as long as no sensor readings are required), and which can be run two orders of magnitude faster. CRoSS is designed to be easily extensible and enables controlled studies of continual reinforcement learning in robotic settings with high physical realism, and in particular allow the use of almost arbitrary simulated sensors. To ensure reproducibility and ease of use, we provide a containerized setup (Apptainer) that runs out-of-the-box, and report performances of standard RL algorithms, including Deep Q-Networks (DQN) and policy gradient methods. This highlights the suitability as a scalable and reproducible benchmark for CRL research.
Coordinating traffic signals along multimodal corridors is challenging because many multi-agent deep reinforcement learning (DRL) approaches remain vehicle-centric and struggle with high-dimensional discrete action spaces. We propose MA2B-DDQN, a human-centric multi-agent action-branching double Deep Q-Network (DQN) framework that explicitly optimizes traveler-level equity. Our key contribution is an action-branching discrete control formulation that decomposes corridor control into (i) local, per-intersection actions that allocate green time between the next two phases and (ii) a single global action that selects the total duration of those phases. This decomposition enables scalable coordination under discrete control while reducing the effective complexity of joint decision-making. We also design a human-centric reward that penalizes the number of delayed individuals in the corridor, accounting for pedestrians, vehicle occupants, and transit passengers. Extensive evaluations across seven realistic traffic scenarios in Melbourne, Australia, demonstrate that our approach significantly reduces the number of impacted travelers, outperforming existing DRL and baseline methods. Experiments confirm the robustness of our model, showing minimal variance across diverse settings. This framework not only advocates for a fairer traffic signal system but also provides a scalable solution adaptable to varied urban traffic conditions.
Joint base station (BS) association and beam selection in multi-UAV aerial corridors constitutes a challenging radio resource management (RRM) problem. It is driven by high-dimensional action spaces, need for substantial overhead to acquire global channel state information (CSI), rapidly varying propagation channels, and stringent latency requirements. Conventional combinatorial optimization methods, while near-optimal, are computationally prohibitive for real-time operation in such dynamic environments. While learning-based approaches can mitigate computational complexity and CSI overhead, the need for extensive site-specific (SS) datasets for model training remains a key challenge. To address these challenges, we develop a Digital Twin (DT)-enabled two-stage optimization framework that couples physics-based beam gain modeling with DRL for scalable online decision-making. In the first stage, a channel twin (CT) is constructed using a high-fidelity ray-tracing solver with geo-spatial contexts, and network information to capture SS propagation characteristics, and dual annealing algorithm is employed to precompute optimal transmission beam directions. In the second stage, a Multi-Head Proximal Policy Optimization (MH-PPO) agent, equipped with a scalable multi-head actor-critic architecture, is trained on the DT-generated channel dataset to directly map complex channel and beam states to jointly execute UAV-BS-beam association decisions. The proposed PPO agent achieves a 44%-121% improvement over DQN and 249%-807% gain over traditional heuristic based optimization schemes in a dense UAV scenario, while reducing inference latency by several orders of magnitude. These results demonstrate that DT-driven training pipelines can deliver high-performance, low-latency RRM policies tailored to SS deployments suitable for real-time resource management in next-generation aerial corridor networks.
We study reinforcement learning for revenue management with delayed feedback, where a substantial fraction of value is determined by customer cancellations and modifications observed days after booking. We propose \emph{choice-model-assisted RL}: a calibrated discrete choice model is used as a fixed partial world model to impute the delayed component of the learning target at decision time. In the fixed-model deployment regime, we prove that tabular Q-learning with model-imputed targets converges to an $O(\varepsilon/(1-γ))$ neighborhood of the optimal Q-function, where $\varepsilon$ summarizes partial-model error, with an additional $O(t^{-1/2})$ sampling term. Experiments in a simulator calibrated from 61{,}619 hotel bookings (1{,}088 independent runs) show: (i) no statistically detectable difference from a maturity-buffer DQN baseline in stationary settings; (ii) positive effects under in-family parameter shifts, with significant gains in 5 of 10 shift scenarios after Holm--Bonferroni correction (up to 12.4\%); and (iii) consistent degradation under structural misspecification, where the choice model assumptions are violated (1.4--2.6\% lower revenue). These results characterize when partial behavioral models improve robustness under shift and when they introduce harmful bias.
Shared autonomy systems require principled methods for inferring user intent and determining appropriate assistance levels. This is a central challenge in human-robot interaction, where systems must be successful while being mindful of user agency. Previous approaches relied on static blending ratios or separated goal inference from assistance arbitration, leading to suboptimal performance in unstructured environments. We introduce BRACE (Bayesian Reinforcement Assistance with Context Encoding), a novel framework that fine-tunes Bayesian intent inference and context-adaptive assistance through an architecture enabling end-to-end gradient flow between intent inference and assistance arbitration. Our pipeline conditions collaborative control policies on environmental context and complete goal probability distributions. We provide analysis showing (1) optimal assistance levels should decrease with goal uncertainty and increase with environmental constraint severity, and (2) integrating belief information into policy learning yields a quadratic expected regret advantage over sequential approaches. We validated our algorithm against SOTA methods (IDA, DQN) using a three-part evaluation progressively isolating distinct challenges of end-effector control: (1) core human-interaction dynamics in a 2D human-in-the-loop cursor task, (2) non-linear dynamics of a robotic arm, and (3) integrated manipulation under goal ambiguity and environmental constraints. We demonstrate improvements over SOTA, achieving 6.3% higher success rates and 41% increased path efficiency, and 36.3% success rate and 87% path efficiency improvement over unassisted control. Our results confirmed that integrated optimization is most beneficial in complex, goal-ambiguous scenarios, and is generalizable across robotic domains requiring goal-directed assistance, advancing the SOTA for adaptive shared autonomy.
We study the joint operation and sizing of cooling infrastructure for commercial HVAC systems using reinforcement learning, with the objective of minimizing life-cycle cost over a 30-year horizon. The cooling system consists of a fixed-capacity electric chiller and a thermal energy storage (TES) unit, jointly operated to meet stochastic hourly cooling demands under time-varying electricity prices. The life-cycle cost accounts for both capital expenditure and discounted operating cost, including electricity consumption and maintenance. A key challenge arises from the strong asymmetry in capital costs: increasing chiller capacity by one unit is far more expensive than an equivalent increase in TES capacity. As a result, identifying the right combination of chiller and TES sizes, while ensuring zero loss-of-cooling-load under optimal operation, is a non-trivial co-design problem. To address this, we formulate the chiller operation problem for a fixed infrastructure configuration as a finite-horizon Markov Decision Process (MDP), in which the control action is the chiller part-load ratio (PLR). The MDP is solved using a Deep Q Network (DQN) with a constrained action space. The learned DQN RL policy minimizes electricity cost over historical traces of cooling demand and electricity prices. For each candidate chiller-TES sizing configuration, the trained policy is evaluated. We then restrict attention to configurations that fully satisfy the cooling demand and perform a life-cycle cost minimization over this feasible set to identify the cost-optimal infrastructure design. Using this approach, we determine the optimal chiller and thermal energy storage capacities to be 700 and 1500, respectively.
Deep reinforcement learning (DRL) has driven major advances in autonomous control. Still, standard Deep Q-Network (DQN) agents tend to rely on fixed learning rates and uniform update scaling, even as updates are modulated by temporal-difference (TD) error. This rigidity destabilizes convergence, especially in sparse-reward settings where feedback is infrequent. We introduce Deep Intrinsic Surprise-Regularized Control (DISRC), a biologically inspired augmentation to DQN that dynamically scales Q-updates based on latent-space surprise. DISRC encodes states via a LayerNorm-based encoder and computes a deviation-based surprise score relative to a moving latent setpoint. Each update is then scaled in proportion to both TD error and surprise intensity, promoting plasticity during early exploration and stability as familiarity increases. We evaluate DISRC on two sparse-reward MiniGrid environments, which included MiniGrid-DoorKey-8x8 and MiniGrid-LavaCrossingS9N1, under identical settings as a vanilla DQN baseline. In DoorKey, DISRC reached the first successful episode (reward > 0.8) 33% faster than the vanilla DQN baseline (79 vs. 118 episodes), with lower reward standard deviation (0.25 vs. 0.34) and higher reward area under the curve (AUC: 596.42 vs. 534.90). These metrics reflect faster, more consistent learning - critical for sparse, delayed reward settings. In LavaCrossing, DISRC achieved a higher final reward (0.95 vs. 0.93) and the highest AUC of all agents (957.04), though it converged more gradually. These preliminary results establish DISRC as a novel mechanism for regulating learning intensity in off-policy agents, improving both efficiency and stability in sparse-reward domains. By treating surprise as an intrinsic learning signal, DISRC enables agents to modulate updates based on expectation violations, enhancing decision quality when conventional value-based methods fall short.
Dairy farming is an energy intensive sector that relies heavily on grid electricity. With increasing renewable energy integration, sustainable energy management has become essential for reducing grid dependence and supporting the United Nations Sustainable Development Goal 7 on affordable and clean energy. However, the intermittent nature of renewables poses challenges in balancing supply and demand in real time. Intelligent load scheduling is therefore crucial to minimize operational costs while maintaining reliability. Reinforcement Learning has shown promise in improving energy efficiency and reducing costs. However, most RL-based scheduling methods assume complete knowledge of future prices or generation, which is unrealistic in dynamic environments. Moreover, standard PPO variants rely on fixed clipping or KL divergence thresholds, often leading to unstable training under variable tariffs. To address these challenges, this study proposes a Deep Reinforcement Learning framework for efficient load scheduling in dairy farms, focusing on battery storage and water heating under realistic operational constraints. The proposed Forecast Aware PPO incorporates short term forecasts of demand and renewable generation using hour of day and month based residual calibration, while the PID KL PPO variant employs a proportional integral derivative controller to regulate KL divergence for stable policy updates adaptively. Trained on real world dairy farm data, the method achieves up to 1% lower electricity cost than PPO, 4.8% than DQN, and 1.5% than SAC. For battery scheduling, PPO reduces grid imports by 13.1%, demonstrating scalability and effectiveness for sustainable energy management in modern dairy farming.
Effective persuasive dialogue agents adapt their strategies to individual users, accounting for the evolution of their psychological states and intentions throughout conversations. We present a personality-aware reinforcement learning approach comprising three main modules: (1) a Strategy-Oriented Interaction Framework, which serves as an agenda-based strategy controller that selects strategy-level actions and generate responses via Maximal Marginal Relevance (MMR) retrieval to ensure contextual relevance, diversity, and scalable data generation; (2) Personality-Aware User Representation Learning, which produces an 81-dimensional mixed-type embedding predicted at each turn from recent exchanges and appended to the reinforcement learning state; and (3) a Dueling Double DQN (D3QN) model and Reward Prediction, in which the policy is conditioned on dialogue history and turn-level personality estimates and trained using a composite reward incorporating agreement intent, donation amount, and changeof-mind penalties. We use an agenda-based LLM simulation pipeline to generate diverse interactions, from which personality estimation is inferred from the generated utterances. Experiments on the PersuasionForGood (P4G) dataset augmented with simulated dialogues reveal three main findings: (i) turn-level personality conditioning improves policy adaptability and cumulative persuasion rewards; (ii) LLM-driven simulation enhances generalization to unseen user behaviors; and (iii) incorporating a change-of-mind penalty reduces post-agreement retractions while slightly improving donation outcomes. These results demonstrate that structured interaction, dynamic personality estimation, and behaviorally informed rewards together yield more effective persuasive policies.