Large Language Models (LLMs) have demonstrated remarkable versatility, due to the lack of factual knowledge, their application to Question Answering (QA) tasks remains hindered by hallucination. While Retrieval-Augmented Generation mitigates these issues by integrating external knowledge, existing approaches rely heavily on in-context learning, whose performance is constrained by the fundamental reasoning capabilities of LLMs. In this paper, we propose Mujica, a Multi-hop Joint Intelligence for Complex Question Answering, comprising a planner that decomposes questions into a directed acyclic graph of subquestions and a worker that resolves questions via retrieval and reasoning. Additionally, we introduce MyGO (Minimalist policy Gradient Optimization), a novel reinforcement learning method that replaces traditional policy gradient updates with Maximum Likelihood Estimation (MLE) by sampling trajectories from an asymptotically optimal policy. MyGO eliminates the need for gradient rescaling and reference models, ensuring stable and efficient training. Empirical results across multiple datasets demonstrate the effectiveness of Mujica-MyGO in enhancing multi-hop QA performance for various LLMs, offering a scalable and resource-efficient solution for complex QA tasks.