Nowadays, billions of people engage in communication and express their opinions on the internet daily. Unfortunately, not all of these expressions are friendly or compliant, making content moderation an indispensable task. With the successful development of Large Language Models (LLMs) in recent years, LLM-based methods have become a feasible solution for handling tasks in various domains. However, in the field of content moderation, there is still a lack of detailed work that systematically introduces implementation details. In this paper, we introduce how to fine-tune an LLM model that can be privately deployed for content moderation. Specifically, we discuss whether incorporating reasons during the fine-tuning process would be better or if it should be treated as a classification task directly. We also explore the benefits of utilizing reasons generated by more powerful LLMs for fine-tuning privately deployed models and the impact of different processing approaches when the answers generated by the more powerful LLMs are incorrect. We report the entire research process and the key findings in this paper, hoping to provide valuable experience for researchers who are fine-tuning privately deployed models in their domain-specific research.