Abstract:Object detection has made tremendous strides in computer vision. Small object detection with appearance degradation is a prominent challenge, especially for aerial observations. To collect sufficient positive/negative samples for heuristic training, most object detectors preset region anchors in order to calculate Intersection-over-Union (IoU) against the ground-truthed data. In this case, small objects are frequently abandoned or mislabeled. In this paper, we present an effective Dynamic Enhancement Anchor (DEA) network to construct a novel training sample generator. Different from the other state-of-the-art techniques, the proposed network leverages a sample discriminator to realize interactive sample screening between an anchor-based unit and an anchor-free unit to generate eligible samples. Besides, multi-task joint training with a conservative anchor-based inference scheme enhances the performance of the proposed model while reducing computational complexity. The proposed scheme supports both oriented and horizontal object detection tasks. Extensive experiments on two challenging aerial benchmarks (i.e., DOTA and HRSC2016) indicate that our method achieves state-of-the-art performance in accuracy with moderate inference speed and computational overhead for training. On DOTA, our DEA-Net which integrated with the baseline of RoI-Transformer surpasses the advanced method by 0.40% mean-Average-Precision (mAP) for oriented object detection with a weaker backbone network (ResNet-101 vs ResNet-152) and 3.08% mean-Average-Precision (mAP) for horizontal object detection with the same backbone. Besides, our DEA-Net which integrated with the baseline of ReDet achieves the state-of-the-art performance by 80.37%. On HRSC2016, it surpasses the previous best model by 1.1% using only 3 horizontal anchors.
Abstract:Recently, the study on object detection in aerial images has made tremendous progress in the community of computer vision. However, most state-of-the-art methods tend to develop elaborate attention mechanisms for the space-time feature calibrations with high computational complexity, while surprisingly ignoring the importance of feature calibrations in channels. In this work, we propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance channel communications in a feature transformer fashion, which can adaptively determine the calibration weights for each channel based on the global feature affinity-pairs. Specifically, given a set of feature maps, CG first computes the feature similarity between each channel and the remaining channels as the intermediary calibration guidance. Then, re-representing each channel by aggregating all the channels weighted together via the guidance. Our CG can be plugged into any deep neural network, which is named as CG-Net. To demonstrate its effectiveness and efficiency, extensive experiments are carried out on both oriented and horizontal object detection tasks of aerial images. Results on two challenging benchmarks (i.e., DOTA and HRSC2016) demonstrate that our CG-Net can achieve state-of-the-art performance in accuracy with a fair computational overhead. https://github.com/WeiZongqi/CG-Net