Vision-language models such as CLIP have shown great impact on diverse downstream tasks for zero-shot or label-free predictions. However, when it comes to low-level vision such as image restoration their performance deteriorates dramatically due to corrupted inputs. In this paper, we present a degradation-aware vision-language model (DA-CLIP) to better transfer pretrained vision-language models to low-level vision tasks as a universal framework for image restoration. More specifically, DA-CLIP trains an additional controller that adapts the fixed CLIP image encoder to predict high-quality feature embeddings. By integrating the embedding into an image restoration network via cross-attention, we are able to pilot the model to learn a high-fidelity image reconstruction. The controller itself will also output a degradation feature that matches the real corruptions of the input, yielding a natural classifier for different degradation types. In addition, we construct a mixed degradation dataset with synthetic captions for DA-CLIP training. Our approach advances state-of-the-art performance on both degradation-specific and unified image restoration tasks, showing a promising direction of prompting image restoration with large-scale pretrained vision-language models. Our code is available at https://github.com/Algolzw/daclip-uir.
Most existing Image-to-Image Translation (I2IT) methods generate images in a single run of a deep learning (DL) model. However, designing such a single-step model is always challenging, requiring a huge number of parameters and easily falling into bad global minimums and overfitting. In this work, we reformulate I2IT as a step-wise decision-making problem via deep reinforcement learning (DRL) and propose a novel framework that performs RL-based I2IT (RL-I2IT). The key feature in the RL-I2IT framework is to decompose a monolithic learning process into small steps with a lightweight model to progressively transform a source image successively to a target image. Considering that it is challenging to handle high dimensional continuous state and action spaces in the conventional RL framework, we introduce meta policy with a new concept Plan to the standard Actor-Critic model, which is of a lower dimension than the original image and can facilitate the actor to generate a tractable high dimensional action. In the RL-I2IT framework, we also employ a task-specific auxiliary learning strategy to stabilize the training process and improve the performance of the corresponding task. Experiments on several I2IT tasks demonstrate the effectiveness and robustness of the proposed method when facing high-dimensional continuous action space problems.
This work aims to improve the applicability of diffusion models in realistic image restoration. Specifically, we enhance the diffusion model in several aspects such as network architecture, noise level, denoising steps, training image size, and optimizer/scheduler. We show that tuning these hyperparameters allows us to achieve better performance on both distortion and perceptual scores. We also propose a U-Net based latent diffusion model which performs diffusion in a low-resolution latent space while preserving high-resolution information from the original input for the decoding process. Compared to the previous latent-diffusion model which trains a VAE-GAN to compress the image, our proposed U-Net compression strategy is significantly more stable and can recover highly accurate images without relying on adversarial optimization. Importantly, these modifications allow us to apply diffusion models to various image restoration tasks, including real-world shadow removal, HR non-homogeneous dehazing, stereo super-resolution, and bokeh effect transformation. By simply replacing the datasets and slightly changing the noise network, our model, named Refusion, is able to deal with large-size images (e.g., 6000 x 4000 x 3 in HR dehazing) and produces good results on all the above restoration problems. Our Refusion achieves the best perceptual performance in the NTIRE 2023 Image Shadow Removal Challenge and wins 2nd place overall.
This paper presents a stochastic differential equation (SDE) approach for general-purpose image restoration. The key construction consists in a mean-reverting SDE that transforms a high-quality image into a degraded counterpart as a mean state with fixed Gaussian noise. Then, by simulating the corresponding reverse-time SDE, we are able to restore the origin of the low-quality image without relying on any task-specific prior knowledge. Crucially, the proposed mean-reverting SDE has a closed-form solution, allowing us to compute the ground truth time-dependent score and learn it with a neural network. Moreover, we propose a maximum likelihood objective to learn an optimal reverse trajectory which stabilizes the training and improves the restoration results. In the experiments, we show that our proposed method achieves highly competitive performance in quantitative comparisons on image deraining, deblurring, and denoising, setting a new state-of-the-art on two deraining datasets. Finally, the general applicability of our approach is further demonstrated via qualitative results on image super-resolution, inpainting, and dehazing. Code is available at https://github.com/Algolzw/image-restoration-sde.
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
Deep learning-based single image super-resolution (SISR) approaches have drawn much attention and achieved remarkable success on modern advanced GPUs. However, most state-of-the-art methods require a huge number of parameters, memories, and computational resources, which usually show inferior inference times when applying them to current mobile device CPUs/NPUs. In this paper, we propose a simple plain convolution network with a fast nearest convolution module (NCNet), which is NPU-friendly and can perform a reliable super-resolution in real-time. The proposed nearest convolution has the same performance as the nearest upsampling but is much faster and more suitable for Android NNAPI. Our model can be easily deployed on mobile devices with 8-bit quantization and is fully compatible with all major mobile AI accelerators. Moreover, we conduct comprehensive experiments on different tensor operations on a mobile device to illustrate the efficiency of our network architecture. Our NCNet is trained and validated on the DIV2K 3x dataset, and the comparison with other efficient SR methods demonstrated that the NCNet can achieve high fidelity SR results while using fewer inference times. Our codes and pretrained models are publicly available at \url{https://github.com/Algolzw/NCNet}.
This paper reviews the NTIRE 2022 challenge on efficient single image super-resolution with focus on the proposed solutions and results. The task of the challenge was to super-resolve an input image with a magnification factor of $\times$4 based on pairs of low and corresponding high resolution images. The aim was to design a network for single image super-resolution that achieved improvement of efficiency measured according to several metrics including runtime, parameters, FLOPs, activations, and memory consumption while at least maintaining the PSNR of 29.00dB on DIV2K validation set. IMDN is set as the baseline for efficiency measurement. The challenge had 3 tracks including the main track (runtime), sub-track one (model complexity), and sub-track two (overall performance). In the main track, the practical runtime performance of the submissions was evaluated. The rank of the teams were determined directly by the absolute value of the average runtime on the validation set and test set. In sub-track one, the number of parameters and FLOPs were considered. And the individual rankings of the two metrics were summed up to determine a final ranking in this track. In sub-track two, all of the five metrics mentioned in the description of the challenge including runtime, parameter count, FLOPs, activations, and memory consumption were considered. Similar to sub-track one, the rankings of five metrics were summed up to determine a final ranking. The challenge had 303 registered participants, and 43 teams made valid submissions. They gauge the state-of-the-art in efficient single image super-resolution.
This work addresses the Burst Super-Resolution (BurstSR) task using a new architecture, which requires restoring a high-quality image from a sequence of noisy, misaligned, and low-resolution RAW bursts. To overcome the challenges in BurstSR, we propose a Burst Super-Resolution Transformer (BSRT), which can significantly improve the capability of extracting inter-frame information and reconstruction. To achieve this goal, we propose a Pyramid Flow-Guided Deformable Convolution Network (Pyramid FG-DCN) and incorporate Swin Transformer Blocks and Groups as our main backbone. More specifically, we combine optical flows and deformable convolutions, hence our BSRT can handle misalignment and aggregate the potential texture information in multi-frames more efficiently. In addition, our Transformer-based structure can capture long-range dependency to further improve the performance. The evaluation on both synthetic and real-world tracks demonstrates that our approach achieves a new state-of-the-art in BurstSR task. Further, our BSRT wins the championship in the NTIRE2022 Burst Super-Resolution Challenge.
In this paper, we tackle the problem of blind image super-resolution(SR) with a reformulated degradation model and two novel modules. Following the common practices of blind SR, our method proposes to improve both the kernel estimation as well as the kernel based high resolution image restoration. To be more specific, we first reformulate the degradation model such that the deblurring kernel estimation can be transferred into the low resolution space. On top of this, we introduce a dynamic deep linear filter module. Instead of learning a fixed kernel for all images, it can adaptively generate deblurring kernel weights conditional on the input and yields more robust kernel estimation. Subsequently, a deep constrained least square filtering module is applied to generate clean features based on the reformulation and estimated kernel. The deblurred feature and the low input image feature are then fed into a dual-path structured SR network and restore the final high resolution result. To evaluate our method, we further conduct evaluations on several benchmarks, including Gaussian8 and DIV2KRK. Our experiments demonstrate that the proposed method achieves better accuracy and visual improvements against state-of-the-art methods.