Abstract:Large language models (LLMs) have shown emerging potential in spatiotemporal reasoning, making them promising candidates for building urban agents that support diverse urban downstream applications. Despite these benefits, existing studies primarily focus on evaluating urban LLM agent on outcome-level metrics (e.g., prediction accuracy, traffic efficiency), offering limited insight into their underlying reasoning processes. As a result, the strengths and limitations of urban LLM agents in spatiotemporal reasoning remain poorly understood. To this end, we introduce USTBench, the first benchmark to evaluate LLMs' spatiotemporal reasoning abilities as urban agents across four decomposed dimensions: spatiotemporal understanding, forecasting, planning, and reflection with feedback. Specifically, USTBench supports five diverse urban decision-making and four spatiotemporal prediction tasks, all running within our constructed interactive city environment UAgentEnv. The benchmark includes 62,466 structured QA pairs for process-level evaluation and standardized end-to-end task assessments, enabling fine-grained diagnostics and broad task-level comparison across diverse urban scenarios. Through extensive evaluation of thirteen leading LLMs, we reveal that although LLMs show promising potential across various urban downstream tasks, they still struggle in long-horizon planning and reflective adaptation in dynamic urban contexts. Notably, recent advanced reasoning models (e.g., DeepSeek-R1) trained on general logic or mathematical problems do not consistently outperform non-reasoning LLMs. This discrepancy highlights the need for domain-specialized adaptation methods to enhance urban spatiotemporal reasoning. Overall, USTBench provides a foundation to build more adaptive and effective LLM-based urban agents and broad smart city applications.
Abstract:Traffic Signal Control (TSC) plays a critical role in urban traffic management by optimizing traffic flow and mitigating congestion. While Large Language Models (LLMs) have recently emerged as promising tools for TSC due to their exceptional problem-solving and generalization capabilities, existing approaches fail to address the essential need for inter-agent coordination, limiting their effectiveness in achieving network-wide optimization. To bridge this gap, we propose CoLLMLight, a cooperative LLM agent framework for TSC. Specifically, we first construct a structured spatiotemporal graph to capture real-time traffic dynamics and spatial relationships among neighboring intersections, enabling the LLM to reason about complex traffic interactions. Moreover, we introduce a complexity-aware reasoning mechanism that dynamically adapts reasoning depth based on real-time traffic conditions, ensuring optimal computational efficiency without sacrificing decision quality. Besides, we propose a fine-tuning strategy that leverages iterative simulation-driven data collection and environmental feedback to build a lightweight LLM tailored for cooperative TSC. Extensive experiments on both synthetic and real-world datasets demonstrate that CoLLMLight outperforms state-of-the-art methods in diverse traffic scenarios, showcasing its effectiveness, scalability, and robustness.
Abstract:Influence maximization (IM) is the problem of identifying a limited number of initial influential users within a social network to maximize the number of influenced users. However, previous research has mostly focused on individual information propagation, neglecting the simultaneous and interactive dissemination of multiple information items. In reality, when users encounter a piece of information, such as a smartphone product, they often associate it with related products in their minds, such as earphones or computers from the same brand. Additionally, information platforms frequently recommend related content to users, amplifying this cascading effect and leading to multiplex influence diffusion. This paper first formulates the Multiplex Influence Maximization (Multi-IM) problem using multiplex diffusion models with an information association mechanism. In this problem, the seed set is a combination of influential users and information. To effectively manage the combinatorial complexity, we propose Graph Bayesian Optimization for Multi-IM (GBIM). The multiplex diffusion process is thoroughly investigated using a highly effective global kernelized attention message-passing module. This module, in conjunction with Bayesian linear regression (BLR), produces a scalable surrogate model. A data acquisition module incorporating the exploration-exploitation trade-off is developed to optimize the seed set further. Extensive experiments on synthetic and real-world datasets have proven our proposed framework effective. The code is available at https://github.com/zirui-yuan/GBIM.