Abstract:Large Language Models (LLMs) have been widely applied across multiple domains for their broad knowledge and strong reasoning capabilities. However, applying them to recommendation systems is challenging since it is hard for LLMs to extract user preferences from large, sparse user-item logs, and real-time per-user ranking over the full catalog is too time-consuming to be practical. Moreover, many existing recommender systems focus solely on ranking items while overlooking explanations, which could help improve predictive accuracy and make recommendations more convincing to users. Inspired by recent works that achieve strong recommendation performance by forecasting near-term item popularity, we propose TRAIL (TRend and explAnation Integrated Learner). TRAIL is a fine-tuned LLM that jointly predicts short-term item popularity and generates faithful natural-language explanations. It employs contrastive learning with positive and negative pairs to align its scores and explanations with structured trend signals, yielding accurate and explainable popularity predictions. Extensive experiments show that TRAIL outperforms strong baselines and produces coherent, well-grounded explanations.
Abstract:Large language models (LLMs) have shown emerging potential in spatiotemporal reasoning, making them promising candidates for building urban agents that support diverse urban downstream applications. Despite these benefits, existing studies primarily focus on evaluating urban LLM agent on outcome-level metrics (e.g., prediction accuracy, traffic efficiency), offering limited insight into their underlying reasoning processes. As a result, the strengths and limitations of urban LLM agents in spatiotemporal reasoning remain poorly understood. To this end, we introduce USTBench, the first benchmark to evaluate LLMs' spatiotemporal reasoning abilities as urban agents across four decomposed dimensions: spatiotemporal understanding, forecasting, planning, and reflection with feedback. Specifically, USTBench supports five diverse urban decision-making and four spatiotemporal prediction tasks, all running within our constructed interactive city environment UAgentEnv. The benchmark includes 62,466 structured QA pairs for process-level evaluation and standardized end-to-end task assessments, enabling fine-grained diagnostics and broad task-level comparison across diverse urban scenarios. Through extensive evaluation of thirteen leading LLMs, we reveal that although LLMs show promising potential across various urban downstream tasks, they still struggle in long-horizon planning and reflective adaptation in dynamic urban contexts. Notably, recent advanced reasoning models (e.g., DeepSeek-R1) trained on general logic or mathematical problems do not consistently outperform non-reasoning LLMs. This discrepancy highlights the need for domain-specialized adaptation methods to enhance urban spatiotemporal reasoning. Overall, USTBench provides a foundation to build more adaptive and effective LLM-based urban agents and broad smart city applications.