Abstract:Unmanned Aerial Vehicle (UAV) Vision-and-Language Navigation (VLN) is vital for applications such as disaster response, logistics delivery, and urban inspection. However, existing methods often struggle with insufficient multimodal fusion, weak generalization, and poor interpretability. To address these challenges, we propose FlightGPT, a novel UAV VLN framework built upon Vision-Language Models (VLMs) with powerful multimodal perception capabilities. We design a two-stage training pipeline: first, Supervised Fine-Tuning (SFT) using high-quality demonstrations to improve initialization and structured reasoning; then, Group Relative Policy Optimization (GRPO) algorithm, guided by a composite reward that considers goal accuracy, reasoning quality, and format compliance, to enhance generalization and adaptability. Furthermore, FlightGPT introduces a Chain-of-Thought (CoT)-based reasoning mechanism to improve decision interpretability. Extensive experiments on the city-scale dataset CityNav demonstrate that FlightGPT achieves state-of-the-art performance across all scenarios, with a 9.22\% higher success rate than the strongest baseline in unseen environments. Our implementation is publicly available.
Abstract:Decision-focused learning (DFL) offers an end-to-end approach to the predict-then-optimize (PO) framework by training predictive models directly on decision loss (DL), enhancing decision-making performance within PO contexts. However, the implementation of DFL poses distinct challenges. Primarily, DL can result in deviation from the physical significance of the predictions under limited data. Additionally, some predictive models are non-differentiable or black-box, which cannot be adjusted using gradient-based methods. To tackle the above challenges, we propose a novel framework, Decision-Focused Fine-tuning (DFF), which embeds the DFL module into the PO pipeline via a novel bias correction module. DFF is formulated as a constrained optimization problem that maintains the proximity of the DL-enhanced model to the original predictive model within a defined trust region. We theoretically prove that DFF strictly confines prediction bias within a predetermined upper bound, even with limited datasets, thereby substantially reducing prediction shifts caused by DL under limited data. Furthermore, the bias correction module can be integrated into diverse predictive models, enhancing adaptability to a broad range of PO tasks. Extensive evaluations on synthetic and real-world datasets, including network flow, portfolio optimization, and resource allocation problems with different predictive models, demonstrate that DFF not only improves decision performance but also adheres to fine-tuning constraints, showcasing robust adaptability across various scenarios.