Abstract:Large Language Models (LLMs) face significant challenges in long-context processing, including quadratic computational costs, information forgetting, and the context fragmentation inherent in retrieval-augmented generation (RAG). We propose a cognitively inspired framework for efficient long-context inference based on chunk-wise compression and selective memory recall, rather than processing all raw tokens. The framework segments long inputs into chunks and encodes each chunk into compressed memory representations using a learned compressor. A gating module dynamically selects relevant memory blocks, which are then iteratively processed by a reasoning module with an evolving working memory to solve downstream tasks. The compressor and reasoner are jointly optimized via end-to-end reinforcement learning, while the gating module is trained separately as a classifier. Experimental results show that the proposed method achieves competitive accuracy on multi-hop reasoning benchmarks such as RULER-HQA, extrapolates context length from 7K to 1.75M tokens, and offers a favorable accuracy-efficiency trade-off compared to strong long-context baselines. In particular, it achieves up to a 2 times reduction in peak GPU memory usage and a 6 times inference speedup over MemAgent.
Abstract:The proliferation of long-context large language models (LLMs) exposes a key bottleneck: the rapidly expanding key-value cache during decoding, which imposes heavy memory and latency costs. While recent approaches attempt to alleviate this by sharing a single set of crucial tokens across layers, such coarse-grained sharing undermines model performance by neglecting the functional diversity of attention heads. To address this, we propose LycheeDecode, an efficient decoding method centered on a fine-grained hybrid-head attention mechanism that employs a hardware-efficient top-k selection strategy. Specifically, the novel HardKuma-based mechanism partitions attention heads into a small subset of retrieval heads that dynamically identify crucial tokens and a majority of sparse heads that reuse them for efficient computation. Through extensive experiments on leading models like Llama3 and Qwen3 across diverse benchmarks for long-context understanding (e.g., LongBench, RULER) and complex reasoning (e.g., AIME24, OlympiadBench), we demonstrate that LycheeDecode achieves generative quality comparable to, and at times surpassing even the full-attention baseline. Crucially, this is accomplished with up to a 2.7x speedup at a 128K context length. By preserving the functional diversity of attention heads, our fine-grained strategy overcomes the performance bottlenecks of existing methods, providing a powerful and validated pathway to both efficient and high-quality long-context LLM inference.