A multi-sensor fusion Student's $t$ filter is proposed for time-series recursive estimation in the presence of heavy-tailed process and measurement noises. Driven from an information-theoretic optimization, the approach extends the single sensor Student's $t$ Kalman filter based on the suboptimal arithmetic average (AA) fusion approach. To ensure computationally efficient, closed-form $t$ density recursion, reasonable approximation has been used in both local-sensor filtering and inter-sensor fusion calculation. The overall framework accommodates any Gaussian-oriented fusion approach such as the covariance intersection (CI). Simulation demonstrates the effectiveness of the proposed multi-sensor AA fusion-based $t$ filter in dealing with outliers as compared with the classic Gaussian estimator, and the advantage of the AA fusion in comparison with the CI approach and the augmented measurement fusion.
This letter presents a novel framework termed DistSTN for the task of synthetic aperture radar (SAR) automatic target recognition (ATR). In contrast to the conventional SAR ATR algorithms, DistSTN considers a more challenging practical scenario for non-cooperative targets whose aspect angles for training are incomplete and limited in a partial range while those of testing samples are unlimited. To address this issue, instead of learning the pose invariant features, DistSTN newly involves an elaborated feature disentangling model to separate the learned pose factors of a SAR target from the identity ones so that they can independently control the representation process of the target image. To disentangle the explainable pose factors, we develop a pose discrepancy spatial transformer module in DistSTN to characterize the intrinsic transformation between the factors of two different targets with an explicit geometric model. Furthermore, DistSTN develops an amortized inference scheme that enables efficient feature extraction and recognition using an encoder-decoder mechanism. Experimental results with the moving and stationary target acquisition and recognition (MSTAR) benchmark demonstrate the effectiveness of our proposed approach. Compared with the other ATR algorithms, DistSTN can achieve higher recognition accuracy.