Abstract:Large Language Models (LLMs) have demonstrated promising capabilities to generate responses that exhibit consistent personality traits. Despite the major attempts to analyze personality expression through output-based evaluations, little is known about how such traits are internally encoded within LLM parameters. In this paper, we introduce a layer-wise probing framework to systematically investigate the layer-wise capability of LLMs in encoding personality for responding. We conduct probing experiments on 11 open-source LLMs over the PersonalityEdit benchmark and find that LLMs predominantly encode personality for responding in their middle and upper layers, with instruction-tuned models demonstrating a slightly clearer separation of personality traits. Furthermore, by interpreting the trained probing hyperplane as a layer-wise boundary for each personality category, we propose a layer-wise perturbation method to edit the personality expressed by LLMs during inference. Our results show that even when the prompt explicitly specifies a particular personality, our method can still successfully alter the response personality of LLMs. Interestingly, the difficulty of converting between certain personality traits varies substantially, which aligns with the representational distances in our probing experiments. Finally, we conduct a comprehensive MMLU benchmark evaluation and time overhead analysis, demonstrating that our proposed personality editing method incurs only minimal degradation in general capabilities while maintaining low training costs and acceptable inference latency. Our code is publicly available at https://github.com/universe-sky/probing-then-editing-personality.
Abstract:Multi-Modal Large Language Models (MLLMs) have exhibited remarkable performance on various vision-language tasks such as Visual Question Answering (VQA). Despite accumulating evidence of privacy concerns associated with task-relevant content, it remains unclear whether MLLMs inadvertently memorize private content that is entirely irrelevant to the training tasks. In this paper, we investigate how randomly generated task-irrelevant private content can become spuriously correlated with downstream objectives due to partial mini-batch training dynamics, thus causing inadvertent memorization. Concretely, we randomly generate task-irrelevant watermarks into VQA fine-tuning images at varying probabilities and propose a novel probing framework to determine whether MLLMs have inadvertently encoded such content. Our experiments reveal that MLLMs exhibit notably different training behaviors in partial mini-batch settings with task-irrelevant watermarks embedded. Furthermore, through layer-wise probing, we demonstrate that MLLMs trigger distinct representational patterns when encountering previously seen task-irrelevant knowledge, even if this knowledge does not influence their output during prompting. Our code is available at https://github.com/illusionhi/ProbingPrivacy.