Abstract:The segmentation of coal maceral groups can be described as a semantic segmentation process of coal maceral group images, which is of great significance for studying the chemical properties of coal. Generally, existing semantic segmentation models of coal maceral groups use the method of stacking parameters to achieve higher accuracy. It leads to increased computational requirements and impacts model training efficiency. At the same time, due to the professionalism and diversity of coal maceral group images sampling, obtaining the number of samples for model training requires a long time and professional personnel operation. To address these issues, We have innovatively developed an IoT-based DA-VIT parallel network model. By utilizing this model, we can continuously broaden the dataset through IoT and achieving sustained improvement in the accuracy of coal maceral groups segmentation. Besides, we decouple the parallel network from the backbone network to ensure the normal using of the backbone network during model data updates. Secondly, DCSA mechanism of DA-VIT is introduced to enhance the local feature information of coal microscopic images. This DCSA can decompose the large kernels of convolutional attention into multiple scales and reduce 81.18% of parameters.Finally, we performed the contrast experiment and ablation experiment between DA-VIT and state-of-the-art methods at lots of evaluation metrics. Experimental results show that DA-VIT-Base achieves 92.14% pixel accuracy and 63.18% mIoU. Params and FLOPs of DA-VIT-Tiny are 4.95M and 8.99G, respectively. All of the evaluation metrics of the proposed DA-VIT are better than other state-of-the-art methods.
Abstract:Traffic signs recognition (TSR) plays an essential role in assistant driving and intelligent transportation system. However, the noise of complex environment may lead to motion-blur or occlusion problems, which raise the tough challenge to real-time recognition with high accuracy and robust. In this article, we propose IECES-network which with improved encoders and Siamese net. The three-stage approach of our method includes Efficient-CNN based encoders, Siamese backbone and the fully-connected layers. We firstly use convolutional encoders to extract and encode the traffic sign features of augmented training samples and standard images. Then, we design the Siamese neural network with Efficient-CNN based encoder and contrastive loss function, which can be trained to improve the robustness of TSR problem when facing the samples of motion-blur and occlusion by computing the distance between inputs and templates. Additionally, the template branch of the proposed network can be stopped when executing the recognition tasks after training to raise the process speed of our real-time model, and alleviate the computational resource and parameter scale. Finally, we recombined the feature code and a fully-connected layer with SoftMax function to classify the codes of samples and recognize the category of traffic signs. The results of experiments on the Tsinghua-Tencent 100K dataset and the German Traffic Sign Recognition Benchmark dataset demonstrate the performance of the proposed IECESnetwork. Compared with other state-of-the-art methods, in the case of motion-blur and occluded environment, the proposed method achieves competitive performance precision-recall and accuracy metric average is 88.1%, 86.43% and 86.1% with a 2.9M lightweight scale, respectively. Moreover, processing time of our model is 0.1s per frame, of which the speed is increased by 1.5 times compared with existing methods.