Abstract:Achieving animal-like agility is a longstanding goal in quadrupedal robotics. While recent studies have successfully demonstrated imitation of specific behaviors, enabling robots to replicate a broader range of natural behaviors in real-world environments remains an open challenge. Here we propose an integrated controller comprising a Basic Behavior Controller (BBC) and a Task-Specific Controller (TSC) which can effectively learn diverse natural quadrupedal behaviors in an enhanced simulator and efficiently transfer them to the real world. Specifically, the BBC is trained using a novel semi-supervised generative adversarial imitation learning algorithm to extract diverse behavioral styles from raw motion capture data of real dogs, enabling smooth behavior transitions by adjusting discrete and continuous latent variable inputs. The TSC, trained via privileged learning with depth images as input, coordinates the BBC to efficiently perform various tasks. Additionally, we employ evolutionary adversarial simulator identification to optimize the simulator, aligning it closely with reality. After training, the robot exhibits diverse natural behaviors, successfully completing the quadrupedal agility challenge at an average speed of 1.1 m/s and achieving a peak speed of 3.2 m/s during hurdling. This work represents a substantial step toward animal-like agility in quadrupedal robots, opening avenues for their deployment in increasingly complex real-world environments.
Abstract:EEG signals have emerged as a powerful tool in affective brain-computer interfaces, playing a crucial role in emotion recognition. However, current deep transfer learning-based methods for EEG recognition face challenges due to the reliance of both source and target data in model learning, which significantly affect model performance and generalization. To overcome this limitation, we propose a novel framework (PL-DCP) and introduce the concepts of feature disentanglement and prototype inference. The dual prototyping mechanism incorporates both domain and class prototypes: domain prototypes capture individual variations across subjects, while class prototypes represent the ideal class distributions within their respective domains. Importantly, the proposed PL-DCP framework operates exclusively with source data during training, meaning that target data remains completely unseen throughout the entire process. To address label noise, we employ a pairwise learning strategy that encodes proximity relationships between sample pairs, effectively reducing the influence of mislabeled data. Experimental validation on the SEED and SEED-IV datasets demonstrates that PL-DCP, despite not utilizing target data during training, achieves performance comparable to deep transfer learning methods that require both source and target data. This highlights the potential of PL-DCP as an effective and robust approach for EEG-based emotion recognition.