Abstract:We propose a real-time 3D human pose estimation and motion analysis method termed RePose for rehabilitation training. It is capable of real-time monitoring and evaluation of patients'motion during rehabilitation, providing immediate feedback and guidance to assist patients in executing rehabilitation exercises correctly. Firstly, we introduce a unified pipeline for end-to-end real-time human pose estimation and motion analysis using RGB video input from multiple cameras which can be applied to the field of rehabilitation training. The pipeline can help to monitor and correct patients'actions, thus aiding them in regaining muscle strength and motor functions. Secondly, we propose a fast tracking method for medical rehabilitation scenarios with multiple-person interference, which requires less than 1ms for tracking for a single frame. Additionally, we modify SmoothNet for real-time posture estimation, effectively reducing pose estimation errors and restoring the patient's true motion state, making it visually smoother. Finally, we use Unity platform for real-time monitoring and evaluation of patients' motion during rehabilitation, and to display the muscle stress conditions to assist patients with their rehabilitation training.
Abstract:Long-Tailed distributions are pervasive in remote sensing due to the inherently imbalanced occurrence of grounded objects. However, a critical challenge remains largely overlooked, i.e., disentangling hard tail data samples from noisy ambiguous ones. Conventional methods often indiscriminately emphasize all low-confidence samples, leading to overfitting on noisy data. To bridge this gap, building upon Evidential Deep Learning, we propose a model-agnostic uncertainty-aware framework termed DUAL, which dynamically disentangles prediction uncertainty into Epistemic Uncertainty (EU) and Aleatoric Uncertainty (AU). Specifically, we introduce EU as an indicator of sample scarcity to guide a reweighting strategy for hard-to-learn tail samples, while leveraging AU to quantify data ambiguity, employing an adaptive label smoothing mechanism to suppress the impact of noise. Extensive experiments on multiple datasets across various backbones demonstrate the effectiveness and generalization of our framework, surpassing strong baselines such as TGN and SADE. Ablation studies provide further insights into the crucial choices of our design.
Abstract:Multivariate time series anomaly detection (MTSAD) aims to accurately identify and localize complex abnormal patterns in the large-scale industrial control systems. While existing approaches excel in recognizing the distinct patterns under the low-dimensional scenarios, they often fail to robustly capture long-range spatiotemporal dependencies when learning representations from the high-dimensional noisy time series. To address these limitations, we propose DARTs, a robust long short-term dual-path framework with window-aware spatiotemporal soft fusion mechanism, which can be primarily decomposed into three complementary components. Specifically, in the short-term path, we introduce a Multi-View Sparse Graph Learner and a Diffusion Multi-Relation Graph Unit that collaborate to adaptively capture hierarchical discriminative short-term spatiotemporal patterns in the high-noise time series. While in the long-term path, we design a Multi-Scale Spatiotemporal Graph Constructor to model salient long-term dynamics within the high-dimensional representation space. Finally, a window-aware spatiotemporal soft-fusion mechanism is introduced to filter the residual noise while seamlessly integrating anomalous patterns. Extensive qualitative and quantitative experimental results across mainstream datasets demonstrate the superiority and robustness of our proposed DARTs. A series of ablation studies are also conducted to explore the crucial design factors of our proposed components. Our code and model will be made publicly open soon.