Abstract:Drama script continuation requires models to maintain character consistency, advance plot coherently, and preserve dramatic structurecapabilities that existing benchmarks fail to evaluate comprehensively. We present DramaBench, the first large-scale benchmark for evaluating drama script continuation across six independent dimensions: Format Standards, Narrative Efficiency, Character Consistency, Emotional Depth, Logic Consistency, and Conflict Handling. Our framework combines rulebased analysis with LLM-based labeling and statistical metrics, ensuring objective and reproducible evaluation. We conduct comprehensive evaluation of 8 state-of-the-art language models on 1,103 scripts (8,824 evaluations total), with rigorous statistical significance testing (252 pairwise comparisons, 65.9% significant) and human validation (188 scripts, substantial agreement on 3/5 dimensions). Our ablation studies confirm all six dimensions capture independent quality aspects (mean | r | = 0.020). DramaBench provides actionable, dimensionspecific feedback for model improvement and establishes a rigorous standard for creative writing evaluation.
Abstract:With the growing demand for video applications, many advanced learned video compression methods have been developed, outperforming traditional methods in terms of objective quality metrics such as PSNR. Existing methods primarily focus on objective quality but tend to overlook perceptual quality. Directly incorporating perceptual loss into a learned video compression framework is nontrivial and raises several perceptual quality issues that need to be addressed. In this paper, we investigated these issues in learned video compression and propose a novel High Visual-Fidelity Learned Video Compression framework (HVFVC). Specifically, we design a novel confidence-based feature reconstruction method to address the issue of poor reconstruction in newly-emerged regions, which significantly improves the visual quality of the reconstruction. Furthermore, we present a periodic compensation loss to mitigate the checkerboard artifacts related to deconvolution operation and optimization. Extensive experiments have shown that the proposed HVFVC achieves excellent perceptual quality, outperforming the latest VVC standard with only 50% required bitrate.