Abstract:The Drawing Projection Test (DPT) is an essential tool in art therapy, allowing psychologists to assess participants' mental states through their sketches. Specifically, through sketches with the theme of "a person picking an apple from a tree (PPAT)", it can be revealed whether the participants are in mental states such as depression. Compared with scales, the DPT can enrich psychologists' understanding of an individual's mental state. However, the interpretation of the PPAT is laborious and depends on the experience of the psychologists. To address this issue, we propose an effective identification method to support psychologists in conducting a large-scale automatic DPT. Unlike traditional sketch recognition, DPT more focus on the overall evaluation of the sketches, such as color usage and space utilization. Moreover, PPAT imposes a time limit and prohibits verbal reminders, resulting in low drawing accuracy and a lack of detailed depiction. To address these challenges, we propose the following efforts: (1) Providing an experimental environment for automated analysis of PPAT sketches for depression assessment; (2) Offering a Visual-Semantic depression assessment based on LLM (VS-LLM) method; (3) Experimental results demonstrate that our method improves by 17.6% compared to the psychologist assessment method. We anticipate that this work will contribute to the research in mental state assessment based on PPAT sketches' elements recognition. Our datasets and codes are available at https://github.com/wmeiqi/VS-LLM.
Abstract:Ultrasound imaging has been widely used in clinical examinations owing to the advantages of being portable, real-time, and radiation-free. Considering the potential of extensive deployment of autonomous examination systems in hospitals, robotic US imaging has attracted increased attention. However, due to the inter-patient variations, it is still challenging to have an optimal path for each patient, particularly for thoracic applications with limited acoustic windows, e.g., intercostal liver imaging. To address this problem, a class-aware cartilage bone segmentation network with geometry-constraint post-processing is presented to capture patient-specific rib skeletons. Then, a dense skeleton graph-based non-rigid registration is presented to map the intercostal scanning path from a generic template to individual patients. By explicitly considering the high-acoustic impedance bone structures, the transferred scanning path can be precisely located in the intercostal space, enhancing the visibility of internal organs by reducing the acoustic shadow. To evaluate the proposed approach, the final path mapping performance is validated on five distinct CTs and two volunteer US data, resulting in ten pairs of CT-US combinations. Results demonstrate that the proposed graph-based registration method can robustly and precisely map the path from CT template to individual patients (Euclidean error: $2.21\pm1.11~mm$).