Abstract:LLM agents have demonstrated remarkable capabilities in software development, but their performance is hampered by long interaction contexts, which incur high API costs and latency. While various context compression approaches such as LongLLMLingua have emerged to tackle this challenge, they typically rely on fixed metrics such as PPL, ignoring the task-specific nature of code understanding. As a result, they frequently disrupt syntactic and logical structure and fail to retain critical implementation details. In this paper, we propose SWE-Pruner, a self-adaptive context pruning framework tailored for coding agents. Drawing inspiration from how human programmers "selectively skim" source code during development and debugging, SWE-Pruner performs task-aware adaptive pruning for long contexts. Given the current task, the agent formulates an explicit goal (e.g., "focus on error handling") as a hint to guide the pruning targets. A lightweight neural skimmer (0.6B parameters) is trained to dynamically select relevant lines from the surrounding context given the goal. Evaluations across four benchmarks and multiple models validate SWE-Pruner's effectiveness in various scenarios, achieving 23-54% token reduction on agent tasks like SWE-Bench Verified and up to 14.84x compression on single-turn tasks like LongCodeQA with minimal performance impact.
Abstract:Retrieval-Augmented Generation (RAG) has demonstrated significant effectiveness in enhancing large language models (LLMs) for complex multi-hop question answering (QA). For multi-hop QA tasks, current iterative approaches predominantly rely on LLMs to self-guide and plan multi-step exploration paths during retrieval, leading to substantial challenges in maintaining reasoning coherence across steps from inaccurate query decomposition and error propagation. To address these issues, we introduce Reasoning Tree Guided RAG (RT-RAG), a novel hierarchical framework for complex multi-hop QA. RT-RAG systematically decomposes multi-hop questions into explicit reasoning trees, minimizing inaccurate decomposition through structured entity analysis and consensus-based tree selection that clearly separates core queries, known entities, and unknown entities. Subsequently, a bottom-up traversal strategy employs iterative query rewriting and refinement to collect high-quality evidence, thereby mitigating error propagation. Comprehensive experiments show that RT-RAG substantially outperforms state-of-the-art methods by 7.0% F1 and 6.0% EM, demonstrating the effectiveness of RT-RAG in complex multi-hop QA.
Abstract:Large Reasoning Models (LRMs) achieve remarkable performance by explicitly generating multi-step chains of thought, but this capability incurs substantial inference latency and computational cost. Collaborative inference offers a promising solution by selectively allocating work between lightweight and large models, yet a fundamental challenge remains: determining when a reasoning step requires the capacity of a large model or the efficiency of a small model. Existing routing strategies either rely on local token probabilities or post-hoc verification, introducing significant inference overhead. In this work, we propose a novel perspective on step-wise collaboration: the difficulty of a reasoning step can be inferred from its very first token. Inspired by the "Aha Moment" phenomenon in LRMs, we show that the entropy of the initial token serves as a strong predictor of step difficulty. Building on this insight, we introduce GlimpRouter, a training-free step-wise collaboration framework. GlimpRouter employs a lightweight model to generate only the first token of each reasoning step and routes the step to a larger model only when the initial token entropy exceeds a threshold. Experiments on multiple benchmarks demonstrate that our approach significantly reduces inference latency while preserving accuracy. For instance, GlimpRouter attains a substantial 10.7% improvement in accuracy while reducing inference latency by 25.9% compared to a standalone large model on AIME25. These results suggest a simple yet effective mechanism for reasoning: allocating computation based on a glimpse of thought rather than full-step evaluation.
Abstract:Repository-level code generation has attracted growing attention in recent years. Unlike function-level code generation, it requires the model to understand the entire repository, reasoning over complex dependencies across functions, classes, and modules. However, existing approaches such as retrieval-augmented generation (RAG) or context-based function selection often fall short: they primarily rely on surface-level similarity and struggle to capture the rich dependencies that govern repository-level semantics. In this paper, we introduce InlineCoder, a novel framework for repository-level code generation. InlineCoder enhances the understanding of repository context by inlining the unfinished function into its call graph, thereby reframing the challenging repository understanding as an easier function-level coding task. Given a function signature, InlineCoder first generates a draft completion, termed an anchor, which approximates downstream dependencies and enables perplexity-based confidence estimation. This anchor drives a bidirectional inlining process: (i) Upstream Inlining, which embeds the anchor into its callers to capture diverse usage scenarios; and (ii) Downstream Retrieval, which integrates the anchor's callees into the prompt to provide precise dependency context. The enriched context, combining draft completion with upstream and downstream perspectives, equips the LLM with a comprehensive repository view.
Abstract:Visual Geometry Grounded Transformer (VGGT) delivers state-of-the-art feed-forward 3D reconstruction, yet its global self-attention layer suffers from a drastic collapse phenomenon when the input sequence exceeds a few hundred frames: attention matrices rapidly become near rank-one, token geometry degenerates to an almost one-dimensional subspace, and reconstruction error accumulates super-linearly.In this report,we establish a rigorous mathematical explanation of the collapse by viewing the global-attention iteration as a degenerate diffusion process.We prove that,in VGGT, the token-feature flow converges toward a Dirac-type measure at a $O(1/L)$ rate, where $L$ is the layer index, yielding a closed-form mean-field partial differential equation that precisely predicts the empirically observed rank profile.The theory quantitatively matches the attention-heat-map evolution and a series of experiments outcomes reported in relevant works and explains why its token-merging remedy -- which periodically removes redundant tokens -- slows the effective diffusion coefficient and thereby delays collapse without additional training.We believe the analysis provides a principled lens for interpreting future scalable 3D-vision transformers,and we highlight its potential for multi-modal generalization.
Abstract:LLM agents are widely deployed in complex interactive tasks, yet privacy constraints often preclude centralized optimization and co-evolution across dynamic environments. While Federated Learning (FL) has proven effective on static datasets, its extension to the open-ended self-evolution of agents remains underexplored. Directly applying standard FL is challenging: heterogeneous tasks and sparse, trajectory-level rewards introduce severe gradient conflicts, destabilizing the global optimization process. To bridge this gap, we propose Fed-SE, a Federated Self-Evolution framework for LLM agents. Fed-SE establishes a local evolution-global aggregation paradigm. Locally, agents employ parameter-efficient fine-tuning on filtered, high-return trajectories to achieve stable gradient updates. Globally, Fed-SE aggregates updates within a low-rank subspace that disentangles environment-specific dynamics, effectively reducing negative transfer across clients. Experiments across five heterogeneous environments demonstrate that Fed-SE improves average task success rates by approximately 18% over federated baselines, validating its effectiveness in robust cross-environment knowledge transfer in privacy-constrained deployments.
Abstract:Aligning large language models with human preferences is critical for creating reliable and controllable AI systems. A human preference can be visualized as a high-dimensional vector where different directions represent trade-offs between desired attributes (e.g., helpfulness vs. verbosity). Yet, because the training data often reflects dominant, average preferences, LLMs tend to perform well on common requests but fall short in specific, individual needs. This mismatch creates a preference coverage gap. Existing methods often address this through costly retraining, which may not be generalized to the full spectrum of diverse preferences. This brittleness means that when a user's request reflects a nuanced preference deviating from the training data's central tendency, model performance can degrade unpredictably. To address this challenge, we introduce Robust Preference Selection (RPS), a post-hoc, training-free method by leveraging directional neighborhood consensus. Instead of forcing a model to generate a response from a single, highly specific preference, RPS samples multiple responses from a local neighborhood of related preferences to create a superior candidate pool. It then selects the response that best aligns with the user's original intent. We provide a theoretical framework showing our neighborhood generation strategy is provably superior to a strong baseline that also samples multiple candidates. Comprehensive experiments across three distinct alignment paradigms (DPA, DPO, and SFT) demonstrate that RPS consistently improves robustness against this baseline, achieving win rates of up to 69% on challenging preferences from under-represented regions of the space without any model retraining. Our work presents a practical, theoretically-grounded solution for enhancing the reliability of preference-aligned models.
Abstract:Reinforcement Learning (RL) has shown remarkable success in enhancing the reasoning capabilities of Large Language Models (LLMs). Process-Supervised RL (PSRL) has emerged as a more effective paradigm compared to outcome-based RL. However, existing PSRL approaches suffer from limited exploration efficiency, both in terms of branching positions and sampling. In this paper, we introduce a novel PSRL framework (AttnRL), which enables efficient exploration for reasoning models. Motivated by preliminary observations that steps exhibiting high attention scores correlate with reasoning behaviors, we propose to branch from positions with high values. Furthermore, we develop an adaptive sampling strategy that accounts for problem difficulty and historical batch size, ensuring that the whole training batch maintains non-zero advantage values. To further improve sampling efficiency, we design a one-step off-policy training pipeline for PSRL. Extensive experiments on multiple challenging mathematical reasoning benchmarks demonstrate that our method consistently outperforms prior approaches in terms of performance and sampling and training efficiency.
Abstract:Understanding and reasoning about entire software repositories is an essential capability for intelligent software engineering tools. While existing benchmarks such as CoSQA and CodeQA have advanced the field, they predominantly focus on small, self-contained code snippets. These setups fail to capture the complexity of real-world repositories, where effective understanding and reasoning often require navigating multiple files, understanding software architecture, and grounding answers in long-range code dependencies. In this paper, we present SWE-QA, a repository-level code question answering (QA) benchmark designed to facilitate research on automated QA systems in realistic code environments. SWE-QA involves 576 high-quality question-answer pairs spanning diverse categories, including intention understanding, cross-file reasoning, and multi-hop dependency analysis. To construct SWE-QA, we first crawled 77,100 GitHub issues from 11 popular repositories. Based on an analysis of naturally occurring developer questions extracted from these issues, we developed a two-level taxonomy of repository-level questions and constructed a set of seed questions for each category. For each category, we manually curated and validated questions and collected their corresponding answers. As a prototype application, we further develop SWE-QA-Agent, an agentic framework in which LLM agents reason and act to find answers automatically. We evaluate six advanced LLMs on SWE-QA under various context augmentation strategies. Experimental results highlight the promise of LLMs, particularly our SWE-QA-Agent framework, in addressing repository-level QA, while also revealing open challenges and pointing to future research directions.




Abstract:While RAG demonstrates remarkable capabilities in LLM applications, its effectiveness is hindered by the ever-increasing length of retrieved contexts, which introduces information redundancy and substantial computational overhead. Existing context pruning methods, such as LLMLingua, lack contextual awareness and offer limited flexibility in controlling compression rates, often resulting in either insufficient pruning or excessive information loss. In this paper, we propose AttentionRAG, an attention-guided context pruning method for RAG systems. The core idea of AttentionRAG lies in its attention focus mechanism, which reformulates RAG queries into a next-token prediction paradigm. This mechanism isolates the query's semantic focus to a single token, enabling precise and efficient attention calculation between queries and retrieved contexts. Extensive experiments on LongBench and Babilong benchmarks show that AttentionRAG achieves up to 6.3$\times$ context compression while outperforming LLMLingua methods by around 10\% in key metrics.