Abstract:Global placement is a critical step with high computational complexity in VLSI physical design. Modern analytical placers formulate the placement problem as a nonlinear optimization, where initialization strongly affects both convergence behavior and final placement quality. However, existing initialization methods exhibit a trade-off: area-aware initializers account for cell areas but are computationally expensive and can dominate total runtime, while fast point-based initializers ignore cell area, leading to a modeling gap that impairs convergence and solution quality. We propose a lightweight co-optimization framework that bridges this initialization gap through two strategies. First, an area-hint refinement initializer incorporates heuristic cell area information into a signed graph signal by augmenting the netlist graph with virtual nodes and negative-weight edges, yielding an area-aware and spectrally smooth placement initialization. Second, a macro-schedule placement procedure progressively restores area constraints, enabling a smooth transition from the refined initializer to the full area-aware objective and producing high-quality placement results. We evaluate the framework on macro-heavy ISPD2005 academic benchmarks and two real-world industrial designs across two technology nodes (12 cases in total). Experimental results show that our method consistently improves half-perimeter wirelength (HPWL) over point-based initializers in 11 out of 12 cases, achieving up to 2.2% HPWL reduction, while running approximately 100 times faster than the state-of-the-art area-aware initializer.
Abstract:A kriging-random forest hybrid model is developed for real-time ground property prediction ahead of the earth pressure balanced shield by integrating Kriging extrapolation and random forest, which can guide shield operating parameter selection thereby mitigate construction risks. The proposed KRF algorithm synergizes two types of information: prior information and real-time information. The previously predicted ground properties with EPB operating parameters are extrapolated via the Kriging algorithm to provide prior information for the prediction of currently being excavated ground properties. The real-time information refers to the real-time operating parameters of the EPB shield, which are input into random forest to provide a real-time prediction of ground properties. The integration of these two predictions is achieved by assigning weights to each prediction according to their uncertainties, ensuring the prediction of KRF with minimum uncertainty. The performance of the KRF algorithm is assessed via a case study of the Changsha Metro Line 4 project. It reveals that the proposed KRF algorithm can predict ground properties with an accuracy of 93%, overperforming the existing algorithms of LightGBM, AdaBoost-CART, and DNN by 29%, 8%, and 12%, respectively. Another dataset from Shenzhen Metro Line 13 project is utilized to further evaluate the model generalization performance, revealing that the model can transfer its learned knowledge from one region to another with an accuracy of 89%.