Abstract:Domain-specific enhancement of Large Language Models (LLMs) within the financial context has long been a focal point of industrial application. While previous models such as BloombergGPT and Baichuan-Finance primarily focused on knowledge enhancement, the deepening complexity of financial services has driven a growing demand for models that possess not only domain knowledge but also robust financial reasoning and agentic capabilities. In this paper, we present QianfanHuijin, a financial domain LLM, and propose a generalizable multi-stage training paradigm for industrial model enhancement. Our approach begins with Continual Pre-training (CPT) on financial corpora to consolidate the knowledge base. This is followed by a fine-grained Post-training pipeline designed with increasing specificity: starting with Financial SFT, progressing to Finance Reasoning RL and Finance Agentic RL, and culminating in General RL aligned with real-world business scenarios. Empirical results demonstrate that QianfanHuijin achieves superior performance across various authoritative financial benchmarks. Furthermore, ablation studies confirm that the targeted Reasoning RL and Agentic RL stages yield significant gains in their respective capabilities. These findings validate our motivation and suggest that this fine-grained, progressive post-training methodology is poised to become a mainstream paradigm for various industrial-enhanced LLMs.
Abstract:Medical image segmentation plays a crucial role in various clinical applications. A major challenge in medical image segmentation is achieving accurate delineation of regions of interest in the presence of noise, low contrast, or complex anatomical structures. Existing segmentation models often neglect the integration of multi-grained information and fail to preserve edge details, which are critical for precise segmentation. To address these challenges, we propose a novel image semantic segmentation model called the Multi-Grained Feature Integration Network (MGFI-Net). Our MGFI-Net is designed with two dedicated modules to tackle these issues. First, to enhance segmentation accuracy, we introduce a Multi-Grained Feature Extraction Module, which leverages hierarchical relationships between different feature scales to selectively focus on the most relevant information. Second, to preserve edge details, we incorporate an Edge Enhancement Module that effectively retains and integrates boundary information to refine segmentation results. Extensive experiments demonstrate that MGFI-Net not only outperforms state-of-the-art methods in terms of segmentation accuracy but also achieves superior time efficiency, establishing it as a leading solution for real-time medical image segmentation.