Abstract:We present SkinGPT-R1, a dermatology focused vision language model that makes diagnostic chain of thought reasoning explicit, step by step, and verifiable. To support skin specific reasoning, we build DermCoT, a corpus of standardized dermatologic chain of thought narratives that combines 10,000 DermEval filtered training cases with 3,000 dermatologist scored certified cases, and we define DermEval as a physician aligned six dimensional evaluator and DermBench as the corresponding benchmark for dermatologic chain of thought quality. On DermBench, across 14 general, reasoning, and medical vision language models, SkinGPT-R1 achieves an average score of 4.031 out of 5 over the six clinician defined dimensions, ranks 1st among all systems, and improves the average score over Vision-R1 by about 41%. On three dermatology classification benchmarks, SkinGPT-R1 delivers stable accuracy gains over Vision-R1 and remains competitive among strong vision language models. Ablation results further show that DermCoT based chain of thought supervision provides substantial improvements over the base model and that adding dermatology aware visual distillation yields consistent additional gains in both narrative quality and recognition.




Abstract:Convolutional neural networks are powerful tools for image segmentation and classification. Here, we use this method to identify and mark the heart region of Drosophila at different developmental stages in the cross-sectional images acquired by a custom optical coherence microscopy (OCM) system. With our well-trained convolutional neural network model, the heart regions through multiple heartbeat cycles can be marked with an intersection over union (IOU) of ~86%. Various morphological and dynamical cardiac parameters can be quantified accurately with automatically segmented heart regions. This study demonstrates an efficient heart segmentation method to analyze OCM images of the beating heart in Drosophila.