Abstract:Adaptations facilitate efficient training of large backbone models, including diffusion models for image generation and transformer-based language models. While various adaptation techniques enhance performance with minimal computational resources, limited adaptation data often leads to challenges in training. To address this, we focus on the enormous amount of backbone data used to pre-train the backbone models. We propose Backbone Augmented Training (BAT), a method that leverages backbone data to augment the adaptation dataset. First, we formulate and prove two mathematical key propositions: one establishes the validity of BAT, while the other identifies a condition under which BAT benefits adaptation. Furthermore, we introduce an advanced data selection scheme that satisfies these propositions and present ALBAT algorithm to implement this approach. ALBAT efficiently enhances adaptation training in both personalization and language generation tasks with scarce data.
Abstract:Retinal foundation models have significantly advanced retinal image analysis by leveraging self-supervised learning to reduce dependence on labeled data while achieving strong generalization. Many recent approaches enhance retinal image understanding using report supervision, but obtaining clinical reports is often costly and challenging. In contrast, metadata (e.g., age, gender) is widely available and serves as a valuable resource for analyzing disease progression. To effectively incorporate patient-specific information, we propose PRETI, a retinal foundation model that integrates metadata-aware learning with robust self-supervised representation learning. We introduce Learnable Metadata Embedding (LME), which dynamically refines metadata representations. Additionally, we construct patient-level data pairs, associating images from the same individual to improve robustness against non-clinical variations. To further optimize retinal image representation, we propose Retina-Aware Adaptive Masking (RAAM), a strategy that selectively applies masking within the retinal region and dynamically adjusts the masking ratio during training. PRETI captures both global structures and fine-grained pathological details, resulting in superior diagnostic performance. Extensive experiments demonstrate that PRETI achieves state-of-the-art results across diverse diseases and biomarker predictions using in-house and public data, indicating the importance of metadata-guided foundation models in retinal disease analysis. Our code and pretrained model are available at https://github.com/MICV-yonsei/PRETI
Abstract:Disentangled representation learning (DRL) aims to break down observed data into core intrinsic factors for a profound understanding of the data. In real-world scenarios, manually defining and labeling these factors are non-trivial, making unsupervised methods attractive. Recently, there have been limited explorations of utilizing diffusion models (DMs), which are already mainstream in generative modeling, for unsupervised DRL. They implement their own inductive bias to ensure that each latent unit input to the DM expresses only one distinct factor. In this context, we design Dynamic Gaussian Anchoring to enforce attribute-separated latent units for more interpretable DRL. This unconventional inductive bias explicitly delineates the decision boundaries between attributes while also promoting the independence among latent units. Additionally, we also propose Skip Dropout technique, which easily modifies the denoising U-Net to be more DRL-friendly, addressing its uncooperative nature with the disentangling feature extractor. Our methods, which carefully consider the latent unit semantics and the distinct DM structure, enhance the practicality of DM-based disentangled representations, demonstrating state-of-the-art disentanglement performance on both synthetic and real data, as well as advantages in downstream tasks.
Abstract:In neuroimaging, generally, brain CT is more cost-effective and accessible imaging option compared to MRI. Nevertheless, CT exhibits inferior soft-tissue contrast and higher noise levels, yielding less precise structural clarity. In response, leveraging more readily available CT to construct its counterpart MRI, namely, medical image-to-image translation (I2I), serves as a promising solution. Particularly, while diffusion models (DMs) have recently risen as a powerhouse, they also come with a few practical caveats for medical I2I. First, DMs' inherent stochasticity from random noise sampling cannot guarantee consistent MRI generation that faithfully reflects its CT. Second, for 3D volumetric images which are prevalent in medical imaging, naively using 2D DMs leads to slice inconsistency, e.g., abnormal structural and brightness changes. While 3D DMs do exist, significant training costs and data dependency bring hesitation. As a solution, we propose novel style key conditioning (SKC) and inter-slice trajectory alignment (ISTA) sampling for the 2D Brownian bridge diffusion model. Specifically, SKC ensures a consistent imaging style (e.g., contrast) across slices, and ISTA interconnects the independent sampling of each slice, deterministically achieving style and shape consistent 3D CT-to-MRI translation. To the best of our knowledge, this study is the first to achieve high-quality 3D medical I2I based only on a 2D DM with no extra architectural models. Our experimental results show superior 3D medical I2I than existing 2D and 3D baselines, using in-house CT-MRI dataset and BraTS2023 FLAIR-T1 MRI dataset.