Abstract:Adaptations facilitate efficient training of large backbone models, including diffusion models for image generation and transformer-based language models. While various adaptation techniques enhance performance with minimal computational resources, limited adaptation data often leads to challenges in training. To address this, we focus on the enormous amount of backbone data used to pre-train the backbone models. We propose Backbone Augmented Training (BAT), a method that leverages backbone data to augment the adaptation dataset. First, we formulate and prove two mathematical key propositions: one establishes the validity of BAT, while the other identifies a condition under which BAT benefits adaptation. Furthermore, we introduce an advanced data selection scheme that satisfies these propositions and present ALBAT algorithm to implement this approach. ALBAT efficiently enhances adaptation training in both personalization and language generation tasks with scarce data.
Abstract:The emergence of various adapters, including Low-Rank Adaptation (LoRA) applied from the field of natural language processing, has allowed diffusion models to personalize image generation at a low cost. However, due to the various challenges including limited datasets and shortage of regularization and computation resources, adapter training often results in unsatisfactory outcomes, leading to the corruption of the backbone model's prior knowledge. One of the well known phenomena is the loss of diversity in object generation, especially within the same class which leads to generating almost identical objects with minor variations. This poses challenges in generation capabilities. To solve this issue, we present Contrastive Adapter Training (CAT), a simple yet effective strategy to enhance adapter training through the application of CAT loss. Our approach facilitates the preservation of the base model's original knowledge when the model initiates adapters. Furthermore, we introduce the Knowledge Preservation Score (KPS) to evaluate CAT's ability to keep the former information. We qualitatively and quantitatively compare CAT's improvement. Finally, we mention the possibility of CAT in the aspects of multi-concept adapter and optimization.