Abstract:Robust autonomous navigation for Autonomous Aerial Vehicles (AAVs) in complex environments is a critical capability. However, modern end-to-end navigation faces a key challenge: the high-frequency control loop needed for agile flight conflicts with low-frequency perception streams, which are limited by sensor update rates and significant computational cost. This mismatch forces conventional synchronous models into undesirably low control rates. To resolve this, we propose an asynchronous reinforcement learning framework that decouples perception and control, enabling a high-frequency policy to act on the latest IMU state for immediate reactivity, while incorporating perception features asynchronously. To manage the resulting data staleness, we introduce a theoretically-grounded Temporal Encoding Module (TEM) that explicitly conditions the policy on perception delays, a strategy complemented by a two-stage curriculum to ensure stable and efficient training. Validated in extensive simulations, our method was successfully deployed in zero-shot sim-to-real transfer on an onboard NUC, where it sustains a 100~Hz control rate and demonstrates robust, agile navigation in cluttered real-world environments. Our source code will be released for community reference.
Abstract:Efficient and safe trajectory planning plays a critical role in the application of quadrotor unmanned aerial vehicles. Currently, the inherent trade-off between constraint compliance and computational efficiency enhancement in UAV trajectory optimization problems has not been sufficiently addressed. To enhance the performance of UAV trajectory optimization, we propose a spatial-temporal iterative optimization framework. Firstly, B-splines are utilized to represent UAV trajectories, with rigorous safety assurance achieved through strict enforcement of constraints on control points. Subsequently, a set of QP-LP subproblems via spatial-temporal decoupling and constraint linearization is derived. Finally, an iterative optimization strategy incorporating guidance gradients is employed to obtain high-performance UAV trajectories in different scenarios. Both simulation and real-world experimental results validate the efficiency and high-performance of the proposed optimization framework in generating safe and fast trajectories. Our source codes will be released for community reference at https://hitsz-mas.github.io/STORM