Abstract:Deep neural networks have achieved great success in many important remote sensing tasks. Nevertheless, their vulnerability to adversarial examples should not be neglected. In this study, we systematically analyze the universal adversarial examples in remote sensing data for the first time, without any knowledge from the victim model. Specifically, we propose a novel black-box adversarial attack method, namely Mixup-Attack, and its simple variant Mixcut-Attack, for remote sensing data. The key idea of the proposed methods is to find common vulnerabilities among different networks by attacking the features in the shallow layer of a given surrogate model. Despite their simplicity, the proposed methods can generate transferable adversarial examples that deceive most of the state-of-the-art deep neural networks in both scene classification and semantic segmentation tasks with high success rates. We further provide the generated universal adversarial examples in the dataset named UAE-RS, which is the first dataset that provides black-box adversarial samples in the remote sensing field. We hope UAE-RS may serve as a benchmark that helps researchers to design deep neural networks with strong resistance toward adversarial attacks in the remote sensing field. Codes and the UAE-RS dataset will be available online.
Abstract:Deep learning algorithms have obtained great success in semantic segmentation of very high-resolution (VHR) images. Nevertheless, training these models generally requires a large amount of accurate pixel-wise annotations, which is very laborious and time-consuming to collect. To reduce the annotation burden, this paper proposes a consistency-regularized region-growing network (CRGNet) to achieve semantic segmentation of VHR images with point-level annotations. The key idea of CRGNet is to iteratively select unlabeled pixels with high confidence to expand the annotated area from the original sparse points. However, since there may exist some errors and noises in the expanded annotations, directly learning from them may mislead the training of the network. To this end, we further propose the consistency regularization strategy, where a base classifier and an expanded classifier are employed. Specifically, the base classifier is supervised by the original sparse annotations, while the expanded classifier aims to learn from the expanded annotations generated by the base classifier with the region-growing mechanism. The consistency regularization is thereby achieved by minimizing the discrepancy between the predictions from both the base and the expanded classifiers. We find such a simple regularization strategy is yet very useful to control the quality of the region-growing mechanism. Extensive experiments on two benchmark datasets demonstrate that the proposed CRGNet significantly outperforms the existing state-of-the-art methods. Codes and pre-trained models will be available online.
Abstract:Deep neural networks (DNNs) have greatly contributed to the performance gains in semantic segmentation. Nevertheless, training DNNs generally requires large amounts of pixel-level labeled data, which is expensive and time-consuming to collect in practice. To mitigate the annotation burden, this paper proposes a self-ensembling generative adversarial network (SE-GAN) exploiting cross-domain data for semantic segmentation. In SE-GAN, a teacher network and a student network constitute a self-ensembling model for generating semantic segmentation maps, which together with a discriminator, forms a GAN. Despite its simplicity, we find SE-GAN can significantly boost the performance of adversarial training and enhance the stability of the model, the latter of which is a common barrier shared by most adversarial training-based methods. We theoretically analyze SE-GAN and provide an $\mathcal O(1/\sqrt{N})$ generalization bound ($N$ is the training sample size), which suggests controlling the discriminator's hypothesis complexity to enhance the generalizability. Accordingly, we choose a simple network as the discriminator. Extensive and systematic experiments in two standard settings demonstrate that the proposed method significantly outperforms current state-of-the-art approaches. The source code of our model will be available soon.
Abstract:Unsupervised domain adaptation for semantic segmentation aims to make models trained on synthetic data (source domain) adapt to real images (target domain). Previous feature-level adversarial learning methods only consider adapting models on the high-level semantic features. However, the large domain gap between source and target domains in the high-level semantic features makes accurate adaptation difficult. In this paper, we present the first attempt at explicitly using low-level edge information, which has a small inter-domain gap, to guide the transfer of semantic information. To this end, a semantic-edge domain adaptation architecture is proposed, which uses an independent edge stream to process edge information, thereby generating high-quality semantic boundaries over the target domain. Then, an edge consistency loss is presented to align target semantic predictions with produced semantic boundaries. Moreover, we further propose two entropy reweighting methods for semantic adversarial learning and self-supervised learning, respectively, which can further enhance the adaptation performance of our architecture. Comprehensive experiments on two UDA benchmark datasets demonstrate the superiority of our architecture compared with state-of-the-art methods.
Abstract:Recent research has shown the great potential of deep learning algorithms in the hyperspectral image (HSI) classification task. Nevertheless, training these models usually requires a large amount of labeled data. Since the collection of pixel-level annotations for HSI is laborious and time-consuming, developing algorithms that can yield good performance in the small sample size situation is of great significance. In this study, we propose a robust self-ensembling network (RSEN) to address this problem. The proposed RSEN consists of two subnetworks including a base network and an ensemble network. With the constraint of both the supervised loss from the labeled data and the unsupervised loss from the unlabeled data, the base network and the ensemble network can learn from each other, achieving the self-ensembling mechanism. To the best of our knowledge, the proposed method is the first attempt to introduce the self-ensembling technique into the HSI classification task, which provides a different view on how to utilize the unlabeled data in HSI to assist the network training. We further propose a novel consistency filter to increase the robustness of self-ensembling learning. Extensive experiments on three benchmark HSI datasets demonstrate that the proposed algorithm can yield competitive performance compared with the state-of-the-art methods.
Abstract:Recently, deep learning based video super-resolution (SR) methods have achieved promising performance. To simultaneously exploit the spatial and temporal information of videos, employing 3-dimensional (3D) convolutions is a natural approach. However, straight utilizing 3D convolutions may lead to an excessively high computational complexity which restricts the depth of video SR models and thus undermine the performance. In this paper, we present a novel fast spatio-temporal residual network (FSTRN) to adopt 3D convolutions for the video SR task in order to enhance the performance while maintaining a low computational load. Specifically, we propose a fast spatio-temporal residual block (FRB) that divide each 3D filter to the product of two 3D filters, which have considerably lower dimensions. Furthermore, we design a cross-space residual learning that directly links the low-resolution space and the high-resolution space, which can greatly relieve the computational burden on the feature fusion and up-scaling parts. Extensive evaluations and comparisons on benchmark datasets validate the strengths of the proposed approach and demonstrate that the proposed network significantly outperforms the current state-of-the-art methods.